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Abstract. In the present work, we synthesized YAG:Eu by nitrate–citrate sol–gel process and 

the structure of the materials was analyzed by means of X-ray diffraction (XRD), showing the cubic 
garnet phase of YAG. We studied the effect of thermal treatment on crystall ine size and we 
distinguished the Eu3+ ion presence by means of optical spectroscopic measurements 
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1. INTRODUCTION 
 
 

Small crystalline materials with particle diameters of 100 nm or less exhibit 
many novel physical properties (optical, magnetic, thermal) not found in their bulk. 
These nanocrystals are of considerable interest for both technological applications 
and fundamental studies. The doped dielectric nanocrystals present a particular 
interest. 

Yttrium aluminum garnet, Y3Al5O12 (YAG), existing in a cubic form with a 
garnet structure, has received much attention because of interesting optical and 
mechanical properties. Single crystal is widely used in solid- state lasers. Rare- 
earth doped YAG powders are promising phosphors for displays. YAG doped with 
lanthanide ions such as Nd3+ and Ce3+ is already used in the construction of dye 
lasers and new generation lighting devices. Ce3+-activated YAG is a very stable 
and long-life phosphor used in liquid crystal light valve projection display [1,2]. 

YAG:Tb is a characteristic narrow-band phosphor suitable for contrast-
enhanced display application in high ambient ill umination conditions. Hence, 
YAG:Tb is one of the potential phosphors which may be used in projection CRT’s 
[3]. Eu3+-doped YAG phosphors also have the potential for application in field 
emission devices. Phosphors for field emission and vacuum fluorescent display 
devices have critical dependence on their particle sizes, the quantum efficiency of 
the luminescence of these materials increases as the size of the crystals decreases. 
Optimum performance in these devices can be achieved by employing ultra fine 
phosphor particles. 

YAG phosphors doped with activators are mainly synthesized by solid-state 
reaction techniques which require high sintering temperatures (above 1600ºC), 
long reaction times (10 - 20h) and extensive ball mil ling, which generally 
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introduces additional impurities and defects. It is reported that two detrimental 
phases, YAM (yttrium aluminum monoclinic- Y4A l2O9) and YAP (yttrium 
aluminum perovskite - YAlO3), often coexist with YAG [4]. In order to obtain 
sharp powders, several chemical synthesis techniques, such as sol–gel [5-14], 
coprecipitation [15,16], precipitation of hydroxides [17], spray pyrolisis [18,19] 
and combustion methods [20], hydrothermal syntheses [21] have received great 
attention recently. In this paper we employed a sol-gel method using nitrates and 
citric acid. This method has the advantages of both wet-chemical and solid-state 
synthesis methods, such as low temperature synthesis (~1000ºC), well-dispersed 
nanoparticles, inexpensive precursors, ease of preparation. 

 
2. EXPERIMENTAL 

 
2.1. Materials and sample preparation 

 
In the sol–gel process for preparing YAG:Eu3+ phosphors, yttrium nitrate, 

europium nitrate and aluminum nitrate were dissolved in distill ed water. The 
prepared solutions were mixed according to the chemical formula of 
Y2.97Eu0.03Al5O12 with 3 at. % europium ions doped with respect to yttrium ions. 

In order to obtain Eu3+:YAG nanocrystals, aqueous solutions of 
Y(NO3)3⋅5H2O 1.93M, Al(NO3)3⋅9H2O 2.12M, and Eu(NO3)3⋅5H2O 1.93M are 
mixed in a molar ratio Y:Eu:Al of 2.97:0.03:5 (Y2.97Eu0.03Al5O12 ). The mixture 
was added to a citric acid solution (C6H8O7⋅H2O) 2M, in molar ratio citric acid: 
nitrates of 3:1. The mi xture was evaporated at 80°C unti l  a transparent 
vi scous gel was obtai ned. The gel was decomposed at 600°C for 6h 
obtaining a black powder, which then was calcinated at ~900°C for 6 h in air, 
achieving this way a white powder implying that organic compounds were burned 
away during calcination. 
 

2.2. XRD measurements 
 

The structure of the precursor powder of YAG:Eu prepared by the sol-gel 
process is determined using x-ray diff raction (XRD). XRD measurements were 
performed at room temperature on a TUR M 62 diff ractometer operating with Co-
� � �������	��
���������������������	����

-filter. 
 

2.3. Optical spectroscopy 
 

The luminescence spectrum of Eu3+ substituted for Y3+ in YAG has been 
measured on samples calcinated at various temperatures. The fluorescence was 
excited with a Xenon lamp with suitable filters. The luminescence spectra were 
recorded with a double monochromator GDM 1000 equipped with an S-20 
photomultiplier in photon counting configuration. 

 
3. RESULTS AND DISCUSSION 

 



A. M. Chinie, A. Stefan, S. Georgescu 

 

414 

 

The gel was annealed at various temperatures. Since no obvious diffraction 
peaks are observed for the samples heat-treated up to 900°C, it can be concluded 
that the powders are still amorphous. The YAG crystallization occurs at ~ 930°C. 
The XRD pattern shows YAG to be the only crystalline component (Fig. 1).  

 

 
Fig. 1. XRD patterns of the sample heated at 900°C. 

 
Increasing the annealing temperature, the diff raction pattern shows higher 

intensity and narrower diffraction lines. It denotes that the YAG crystalli tes grow 
as the annealing temperature increases. Thus, in Fig. 2 we show the XRD patern of 
an YAG:Eu powder annealed at 1300ºC. 

 

 
Fig. 2. XRD patterns of the sample heated at 1300°C. 

 
The presence of the Eu3+ ion in the YAG nanocrystals was evidenced using 

optical spectroscopy measurements. The fluorescence spectrum of Eu3+ in samples 
annealed at 900ºC (Fig. 3) is characteristic for the amorphous state.  
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Fig. 3. The fluorescence spectrum (5D0→7Fj) of Eu3+ in samples 

annealed at 900ºC – amorphous state. 
 
When heated at 930º C the fluorescence spectrum of Eu3+ in YAG is obtained 

(Fig. 4). 
 

 
Fig. 4. The fluorescence spectrum (5D0→7Fj) of Eu3+ in samples 
annealed at 930ºC - the fluorescence spectrum of Eu3+ in YAG 

 
With the increase of the annealing temperature the fluorescence lines become 

narrower. To illustrate this behavior, we measured the temperature dependence of 
the linewidth of two isolated fluorescence lines belonging to the transition 5D0 �

7F4 
(Fig. 5). A monotonous decrease of the linewidth with annealing temperature is 
observed. We interpret this behavior as a reduction of the disorder produced by the 
nanocrystals' surface as the crystallites increase. 
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Fig. 5. Dependence of line width with annealing temperature of two 

isolated fluorescence lines belonging to the transition 5D0
� 7F4. Inset: 

the two analyzed lines 

 
 

3. CONCLUSIONS 
 

Pure garnet phase YAG:Eu phosphor can be synthesized at calcination 
temperatures ~ 900°C by nitrate–citrate sol–gel process. Single-phase cubic YAG: 
Eu is formed by direct crystalli zation from amorphous materials and no 
intermediate phase (such as YAM or YAP) is observed. YAG:Eu powders of 
various particle sizes can be synthesized by varying the calcination temperature.  

Both XRD and optical spectroscopy measurements ill ustrated the YAG 
phase. 
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