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1. INTRODUCTION

The nonlinear Schrödinger equation (NLS) is one member of the family of
completely integrable nonlinear evolution equations. It is a generic equation which
appears any time when a quasi-monochromatic wave is propagating in a dispersive
and weakly nonlinear medium, and was used to describe a large variety of
phenomena in hydrodynamics, nonlinear optics, especially in nonlinear optical
fibers, quasi-one-dimensional nonlinear molecular systems, Bose-Einstein
condensate, to mention only some of the fields where this equation appears [1–2].
With well initial conditions (decaying fast enough at infinity) the solution is found
using the inverse scattering method (IST). A special class of solutions, the solitons,
is easily obtained solving the corresponding linear integral equation of the inverse
problem (Gelfand-Levitan-Marchenko equation). The problem is more difficult if
we are looking for periodic solutions [1, 3, 4], and more modern methods are
required (a regular Riemann problem). But periodic solutions can be found using
several direct methods, and usually they are in the class of elliptic functions (see [1,
5–8] where more references can be found).

Of special interest for the present work is the very simple method of
Akhmediev and Korneev [5], where a special class of periodic solutions of NLS
equations is obtained using elementary methods. As there are some obscure points
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in their reasoning we reconsider the method and find the whole class of these
special periodic solutions, larger than the solutions determined in [5].

2. BASIC  RELATIONS

Let us consider the NLS equation
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Here by subscripts t and x we mean partial derivative with respect to t and x
respectively. The basic assumption used in [5] is a very simple relation (a linear
one) between the real part v of u and its imaginary part w, namely

= α + β( , ) ( ) ( ) ( , )v x t t t w x t (3)

where the coefficients of this linear relation are depending only on the time variable.
Introducing (1) in (2) and eliminating the second order derivative wxx we get
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As α and β are for the moment completely arbitrary functions of t we can impose
several constraints to reduce (4) to a simpler form. These are
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The first ensures us that the free term in (4) vanishes, while the second makes the
coefficient of w in (4) to be proportional to + β2(1 ).  With these constraints eq. (4)
becomes

2 0tw w w− β − α = (6)

Now the solving scheme is the following. First we have to find the general
solution of the system (5). Next using this solution in (6), the general dependence
of w on the time variable is determined. It contains an integration constant
depending on x. Using one of the equations (2) a differential equation for it is
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found. All these differential equations are very simple and their solutions are easily
obtained by elementary integrations.

3. INTEGRATION  SCHEME

Eliminating β from the two equations (5) we remain with the following
differential equation for α.
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1tt t
αα + α + α − α =

− α
(7)

As this equation doesn’t contain the time variable explicitly, it can be reduced to a
first order differential equation. Indeed, writing ( )t pα = α  we have tt pp′α =  where

we denoted ′ = αd / d .p p  Introducing the new variable α = 2( )z p  this satisfies the
first order differential equation
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It is of the form
f

z z f f
f
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where α = − α2( ) 1 .f  The general solution of (9) is
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where K is an integration constant, and F
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Then it is easily shown that the time dependence of α is given by the equation
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Several classes of solutions are obtained, depending on the value of the constant K.
Case 1: K > 0

Denoting + = 2 ,11K
k

 < 1k  and introducing the new time variable τ = / ,t k

we get
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which is the equation satisfied by the Jacobi elliptic function ± τsn( , ).k  Then
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In the limiting case →1k  we get α = β = −th .t
Case 2: K < –1
Then + <1 0K  and it is convenient to write + = − 21 .K a  Thus eq. (10)

becomes
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Straightforward transformations lead us to
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Finally we get ( )′ = − 21k k
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It is singular in the point τ = 0. The inequality α ≥ 1 is satisfied.
A second solution is also possible, namely

( )α =
τ
1

cn , k
(16)

with the same definition (14) of k and τ, which is singular for τ = K(k) (K(k) being
the complete elliptical function of first kind).

Case 3: –1 < K < 0
Then 0 < K + 1 < 1. With the notation K + 1 = k2 and introducing the new

function = α1 ,z
k

 this will satisfy the differential equation for Jacobi elliptic

function sn(t, k), so
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( )α = sn ,k t k (17)

Further on we shall restrict ourselves only to the case 1. With the change of

variable = 1y
w

 and = τ,t k  eq. (6) becomes

τ + β + α = 0y k u k (18)

Using the expression (12) for ( )α τ  and ( )β τ  the solution of (18) is
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where C(x) is an integration constant independent of t but depending on x. The
function C(x) satisfies a differential equation obtained introducing (19) (and
v = α + βw) in any of the equations (2). Straightforward calculations lead us to the
following equation
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which has to be satisfied for any value of τ. It is easily seen that this condition is
equivalent with the pair of equations
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In the limit → 0k  this reduces to the result of Akhmediev and Korneev [5]. The
two equations (20) are compatible, the second representing a prime integral of the
previous (the integration constant equal with –1/k2). We can write the second
eq. (20) in the form
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where − 2
1C  and 2

2C  are the two roots of the equation
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The solution of (21) can be also expressed in term of Jacobi elliptic functions.
Writing
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and = 2C C C  the equation satisfied by C  is = ξ( )/ 2x k
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which is the differential equation satisfied by ξ κcn( , ).  Then
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Let us summarize the obtained results. The solution of eq. (1) is given by

( ) ( ) ( )( ) ( )= α + + β, ,u x t t i t w x t

where

( ) ( )

( ) ( ) ( )
( )

⎧α = −
⎪
⎨
β = − < <⎪

⎩

sn / ,

sn / , cn / ,
, 0 1

dn / ,

t t k k

t k k t k k
t k k

t k k

and

( ) ( ) ( )
( ) ( )

( )
( )

=
−

⎛ ⎞−= ⎜ ⎟
⎝ ⎠+

dn / ,
,

1 cn / ,

1 2 1cn ,
21

C x t k k
w x t

k C x t k k

kC x x
kk k

This is the general solution of (1) (in the case 1) and is improving the result
obtained in [5]. In a similar way we find the solutions in the other cases 2 and 3.
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