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Abstract. To highlight the role of inappropriate diet and drug administration in living systems
a linear kinetic model is discussed taking into account the chemical coupling among the bio-
molecules involved and the interaction of these with the corresponding molecules of supplied
external factors.
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1. INTRODUCTION

At present, the role of molecular physics is generally accepted in
understanding the chemical and biological phenomena. Both in chemistry and
biology we have to do with chemical reactions in which some molecules (as
reactants) give rise to other (new or “old”) molecules (as products).

Among the mentioned chemical reactions are also and those involved in the
metabolism of living systems. It is well known that metabolism is one of the basic
processes of the cell and is due to the exchange of substance and energy between
the living subject and the environment. The main way to have that exchange is to
supply the cell with “food” i.e., by diet. However depending on the molecular
composition (“normal”, “rich” or “poor”), the diet can be one of the major risk
factors for many diseases like coronary heart disease (CHD), stroke, diabetes,
cancer, etc.

For example atherosclerosis is the major cause of morbidity and mortality
throughout the world. A hyperlipemic diet can give rise to atherosclerotic lesions,
to increase triglycerides (TG), total cholesterol (TC), LDL-cholesterol (LDL-C)
and to form peroxides, etc [1–6].

Once a disease is installed to restore the living systems to a normal state it is
necessary to administer efficient drugs. For the treatment of hypercholesterolemia
are statins, both for reducing the progression and inducing the regression of
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atherosclerosis. Manly the statins act as inhibitors and in this way the synthesis of
cholesterol in the cell is limited [7–9].

In many experiments done in biology people measure the concentration of
different biomolecules like total cholesterol (TC), low density lipo-proteins (LDL),
high density lipo-proteins (HDL), lipid peroxides expressed as total peroxyl radical
trapping potential (TRAP), thiobarbituric acid reactive substances (TBARS),
angiotensin converting enzyme (ACE) etc. at different stages of hyperlipemic diet
and drug administration. From this kind of measurements on important results is
revealed, namely, there are interactions among all measured parameters which
cannot be neglected in accurate studies [10–12] Also the measured concentrations
of bio-molecules were different at various stages of administered diet and treatment
showing maxima and minima [1, 2–16].

Since in many cases the experimental parameters (serum concentration of
different bio-molecules) are slowly varying with respect to time, it is considered
that a linear kinetic description, for these kinds of phenomena, could be
appropriate.

In line with this motivation, in a previous paper, [17], we proposed a linear
kinetic approach taking into account the coupling both among different bio-
molecules on the system and of these with the administered diet and drug.

The aim of this paper is to highlight the strength and weakness of such a
model.

2. THE  LINEAR  KINETIC  APPROACH

As has been mentioned above many bio-logical phenomena are rather
dynamic, near or far away of thermodynamic equilibrium, the coupling among
different parameters (bio-molecules) exists and a kinetic description could be seen
as a step for understanding the living processes as a results of diet and drug action.
So our whole system consists of the living subject (some bio-molecules of this),
diet and drug, all together interacting.

To formulate the kinetic theory, we resume shortly, the bio-chemical model
described in [17] as follows:

If at time t = 0 (initial time) a diet D is administered to a living subject we
suppose that there are bio-chemical reactions of the type:

(1)
i i

i i

A D A+ ⇔∑ ∑ (1)

where Ai represents the symbol of i involved bio-molecule, D is the symbol for the
diet and Ai is the symbol for the same i bio-molecule with its concentration
modified due to the diet D.
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At another time t0 > 0 if the same diet D is administered (as a continuation) to
a control group the reaction is:

+ ⇔∑ ∑(1) (2)
i iA D A (2)

Also at t = t0, to a second group (the treated group) is administered a drug M
along the diet D and the reaction is:

+ + ⇔∑ ∑(1) (3)
i iA D M A (3)

The corresponding concentration values of (1) ,iA  (2)
iA  depends of the action

of diet D and (3)
iA  is a function both of D and M.

In the reactions (1), (2), (3) the necessary enzyme in the process of
metabolism is not explicitly written because it is supposed that the concentration of
enzyme is not modified. The role of this is only to catalyze the reactions. Also in
writing the reactions (2) and (3) the two groups (the control group and the treated
one) are supposed to be, as much as possible, to be homogeneous which is a strong
and necessary condition in biological experiments.

Now, if we denote the corresponding concentrations Xi, XD, XM then in the
linear approach (near thermodynamic equilibrium) one can write the following set
of coupled kinetic equation for the variation of concentration with respect to time,
as a results of mutual interaction of all components including the diet and drug:

d
, , , ,

d
p

pq
q

X
p q i D M

t
= α =∑ (4)

where αpq are the coupling coefficients given, for our bio-chemical model, by

pp pq
q p

k
≠

α = −∑     (diagonal terms) (5)

,pq qpk p qα = ≠     (off-diagonal terms) (6)

In eqs. (5) and (6) kpq are the chemical rate constants and in general ≠ .pq qpk k

The set of equations (4) satisfies the Onsager principle as can be easily
proved [18].

By using (5) and (6), via (4), one gets:

=∑
d

0
d

p

p

X
t

(7)

The relation (7) tells us that in the process of interaction among components
(two by two) and with the diet and drug, the quantity of matter is conserved such that:

= =∑ p p
p

X C const (8)
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3. THEORETICAL  RESULTS

A. Firstly let us see how eqs. (7) and (8) can be used. Suppose the control
group as described by reaction (2) and treated group described by reaction (3) are
“identical” or as much as it is possible homogeneous (a compulsory requirement in
biological experiments). Also the direct interaction between diet and drug is very
weak (a realistic assumption).

Then, by integration of eq. (7) both for the control and treated groups and by
using proper initial conditions to determine the corresponding integration constants
one obtains an approximate expression for the effective drug concentration actively
used during the treatment at a moment > 0t t

+⎡ ⎤
≈ −⎢ ⎥
⎢ ⎥⎣ ⎦
∑ ∑(0) ( )( ) ( ) ( )D M

M i i
i i

X t X t X t (9)

where XM is the drug concentration, ( )D
iX  the concentration of bio-molecule i

modified by diet D (control group) and +( )D M
iX  the concentration of the same bio-

molecule i modified by diet and drug.
Now to use relation (9) there are two possibilities: a) naturally to solve the

system of eqs. (4) and the corresponding solutions to be introduced in (9). To do
that it is necessary to know coupling constants αpq (respectively the rate constants
kq) which is a tremendous job because are many different bio-molecules in all
chemical reactions of metabolism. b) To use the measured values for all relevant
concentrations at the “end” of treatment and to compare it with the initial dose of
drug to see if it is necessary to increase or decrease the dose in order the treatment
to be efficient.

It has to be emphasized that if the homogeneity condition, for the two groups
is not fulfilled the results obtained via relation (9) may have no relevance and the
relation (12) of [17] is needed to use.

B. The main goal, in our model, is to solve the set of eqs. (4). To do this we
are looking for a solution of the form:

=( ) ert
p pX t A (10)

where r is obtained from the characteristic determinant:

δ − α =det 0.pq pqr (11)

For some values of αpq coefficients, the roots of eq. (11) may be complex
conjugate quantities:
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= α + β = α − β α = α α β = β α*, , ( ), ( ).pq pqr i r i (12)

In that case the solution can be written as [19]:

−α⎡ ⎤= β + β +⎣ ⎦( ) cos sin e t
p p p pX t A t B t X (13)

where the constants Ap, Bp, pX  can be determined from the initial conditions. Also,

Xp constants are satisfying the relation

α =∑ 0pq q
q

X (14)

The solution (13) is a good one only if the restriction α > 0 is fulfilled.
As has been mentioned before, there are many coupling constants to be

known what it makes difficult to use the solution (13). Therefore more
approximations are needed. For example a semi-empiric solution.

C. A semi-empiric approximation of (13). Whenever β <1,t  by using the
expansion in series of βsin t  and βcos t  from (13) up to second order in t one gets
for bio-molecule i:

( ) −α≈ + + +2( ) e it
i i i i iX t a b t c t X (15)

where = ,i ia A  = β ,i ib B  = − β21
2i ic a  and from the initial conditions:

= +(0) ,i i iX a X    for   = 0,t (16)

∞ =( ) ,i iX X    for   →∞.t (17)

The advantage of expression (15) is the following: the average value iX  of
(15) is

→∞
= = ∞∫1lim ( )d ( )i i i

t
X X t t X

t
(18)

and with a good approximation it is the average value over the corresponding time
interval of experimental values (i.e., the duration of treatment) if the stationary
state is reached.

Also it was noted above that experimental ( )iX t  has minima and maxima [1,
12] at a time tm. Then from the extremum of (15) with respect to time one gets:

+
α = α >

+ + 2

2
, 0i i m

i i
i i m i m

b c t
a b t c t

. (19)
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The value of β can be chosen such that to ensure a good convergence of our
series expansion of (13), i.e., the contribution of next term ∝ 3t  in (15) to be
neglected or to be less than 5% (an accepted approximation).

This corresponds to:

β ≈ 0.056i    and    <
3

.i
i

m

a
b

t
(20)

By this choice of βi the constant ci is:

β
= −

2
.

2
i i

i
a

c (21)

The coefficient bi can be determined now by fitting the solution (15) with the
experimental data.

Now we have a procedure to describe the time variation of bio-molecules
concentration, with minima and maxima and to get the stationary state after a time
shorter or longer which will be in fact the duration of treatment with specific
medicines. This final statement is in agreement with many experimental
observations [1, 12], etc.

From solution (15) it results that the time variation of concentration ( )iX t  is
much faster at the beginning action of diet and drug than at the end of treatment if
the administered drug is adequate. This prediction is confirmed by experience too.

D. The production of entropy S. In the same frame of bio-chemical picture
and near thermodynamic equilibrium, the production of entropy can be written as:

+ →
( )( )( )
int,int

ddd
d d d

DiD
fext

SSS
t t t

(22)

for the control group and

+

+ + →
( )( )( ) ( )
int,int

ddd d
d d d d

D MiD M
fext ext

SSS S
t t t t

(23)

for the treated group. The notation “ext” refers to diet D and drug M and “int” to
subject parameters while f to the situation when diet and drug was already
consumed.

In eqs. (22) and (23) ≥intd
0

d
S

t
 (as for isolated systems) while 

d
0

d
extS
t
≷  both

for diet and drug.
For us, the most interesting situation is when the production of entropy

corresponds to a stationary state (see [20, 21]) because in that case the effect of
drug is considered good. But, in that case, due to Prigogine, the production of
entropy has to be minimum i.e.,
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( ) ( )
2int, int,
2

d dd d0, 0
d d dds s

D M D M
f f

t t t t

S S

t t tt

+ +

= =

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= >
⎣ ⎦ ⎣ ⎦

(24)

where ts is the moment when stationary state is reached.
Indeed, following the references [20, 21] the production of entropy given by

eqs. (22) and (23), for our bio-chemical model, can be written as:

( ) ( )
( )

( )

ν

ν ν
ν

⎡ ⎤
= = −⎢ ⎥

⎢ ⎥⎣ ⎦

∏
∏ ∏ ∏

int,
12 21

d
ln

d

k

k l

l

k
f k

k l
k l l

l

X
S AJ R k X k X

t T X
(25)

where A is the chemical affinity, J-the current flux, T-the temperature, R-the ideal
gas constant, k-the rate constant, vk and vl the stoichiometric coefficients for
reactants and products, respectively, and K-the constant of chemical equilibrium.

One important observation has to be revealed: the production of entropy
satisfies the condition (24) only if there is interaction between different
components which is in accord with the kinetic approach described above via eqs.
(4) and also with the most of experimental observations which show that there is
correlation effects among different bio-molecules of the living cell.

Again, to see if (24) is satisfied there are two possibilities: a) to use for ( )iX t
the solution (13) or (15) and b) to use the experimental values whenever the
stationary state can be obtained by treatment. As a matter of fact from (24) the
shortest time (critical time ts) can be determined to getting the stationary state.

A simple example. Since in many cases the administered diet and drug doses
are constant, it can be supposed that:

= = = =
d d

, .
d d

D M
D M

S S
C const C const

t t
(26)

Also, for simplicity, we consider =intd
0

d
S

t
 on the left side of (22) and (23)

which may or may not be true. Then, by integration, from (26) one gets:
+ − = −( ) ( )

0int, int, ( )D M D
Mf fS S t t C (27)

because
= −M DC C     for   > 0t (28)

where t0 is the starting moment of treatment. The condition (28) is necessary in
order to get the stationary state.

The important result contained in (27) is that the entropy, after treatment, is
smaller, for 0,DC >  than of the control group which is a desire in medical care,
i.e., the order is higher in normal subjects.
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E. Some concluding remarks
1. In order to explain the time variation of many experimental serum parameters

(concentrations) of living systems a set of coupled kinetic equations is written
taking into account the interaction among bio-molecules (two by two) and also
the interaction of these with administered diet and drug.

2. The solutions of eqs. (4) are found: a) in general, under the form (13) which
requires that the coupling coefficients (the chemical rate constants) to be known
and b) a semi-empiric solution (15) with parameters. A simple procedure to
determine the corresponding parameters is done.

3. From the solution (13) and (15) the complete description of time dependence, of
interested concentrations, is obtained including the observed minima and
maxima, which are due to the interaction between bio-molecules. Also the
stationary state can be foreseen.

4. Using the conservation condition of matter (equation (7), relation (9), for the
effective drug concentration actively used during the treatment of subject with
drugs, is obtained. Two points are important to be noted here: a) the relation (9)
is valid only for homogeneous groups and b) both the diet and drug are time
varying in the process of metabolism even if a fixed dose is administered in the
initial phase.

5. If the production of entropy is analyzed (in the same bio-chemical picture) it
results that to satisfy the Onsager and Prigogine principles it is necessary to have
interactions among in valued bio-molecules which is the case in our model.
Also, the living systems to have higher order after treatment with drugs the
effect of these has to be contrary to the action of “rich” (or wrong) diet.

The model discussed here and in (17) has and some deficiencies:
a) Because there are a lot of important bio-molecules and many chemical reactions

(more than 100!) in the process of metabolism it is almost impossible to know
and take into account all coupling coefficients which enter in equation of type
(4). Of course there is a way to eliminate a part of these by using the expe-
rimental data, i.e. to calculate the correlation coefficients and then to apply the
F-test in order to see which are important.

b) There is in practice a real problem of homogeneity group’s (the control and
treated groups) during of the medical experiments what means that the relation
(9) gives us just an idea how things happen.

c) Many biological phenomena are not near but rather far away of thermodynamic
equilibrium such that the non-linear effects are important and the instabilities
can arise. The linear kinetic approach is unable to describe the instabilities and
the corresponding critical concentrations hence the non-linear theories are
necessary. A first step, in this direction, has been done, recently in [22] with
promising results.

Between the two approaches developed here, as an extension of [17], and that
proposed by us in [22] there is a natural connection. Firstly, both are based on a
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bio-chemical picture. Secondly, via eqs. (4), (8), (9), (13) and (15) the diet and
drug concentrations can be obtained as function of time. Then the corresponding
solutions could be used in the eq. (3) of [22] in a trial to find numerical results for
instability problems.

Anyway, the model discussed in this paper is a satisfactory description for
some biological processes that take place inside living systems (in the presence of
external factors) and can be used for a large category of bio-molecules and diseases
like atherosclerosis, diabetes, cancer etc.

Acknowledgements. I would like to express my gratitude to Academician Maya Simionescu
for permanent support in studying this subject. Many thanks to Dr. Anca Sima, Mrs. Camelia Stancu.
Mr. Loredan Niculescu, Mr. Cosmin Catană-Negreanu for useful discussion in the field of cellular
biology and related with some unpublished experimental results obtained by them about the effect of
simvastatin treatment on the evolution of atherosclerotic process in hyperlipemic hamsters. Also it is
a pleasure for me to thank Mr. Sorin Ciobanu for the help in preparing the manuscript.

REFERENCES

1. H. Estebaur et al., Free Radical Biology and Medicine, 13, 341–390 (1992).
2. Maya Simionescu et al., Vasc. Pharmacol., 38, 275–282, (2002).
3. J. D. Wagner et al., Arterioscler. Thromb. Vasc Biology, 23, 2241–2246 (2003).
4. S. Belosta et al., Arteriscler. Thromb. Vasc. Biology, 18, 1671–1678 (1998).
5. A. Sima et al., J. Submicrosc. Cytol. Pathol, 22, 1–16 (1990).
6. C. Stancu, A. Sima, Proc. Rom. Acad. Series B, 22, 171–174 (2001).
7. M. Aviram et al., Atherosclerosis, 138, 271–280 (1998).
8. A. Corsini et al., Pharmacol. Ther., 84, 413–428 (1999).
9. S. Balosta et al., Ann. Med., 32, 164–176 (2000).

10. T. R. Paderson et al., Circulation, 97, 1453–1460 (1998).
11. R. Blackburn et al., Arterioscler. Thromb. Vasc. Biology, 21, 1962–1968 (2001).
12. A. Sima et al., (unpublished results).
13. M. Kajinsky et al., Arterioscler. Thromb. Vasc. Biology, 21, 1004–1010 (2001).
14. K. Ylitak et al., Arterioscler, Thromb. Vasc. Biology, 21, 838–843 (2001).
15. D. S. Lamb et al., Arterioscler, Thromb. Vasc. Biology, 21, 997–1003 (2001).
16. O. L. Volgev et al., Arterioscler, Thromb. Vasc. Biology, 21, 1046–1052 (2001).
17. A. Glodeanu, A. Sima, Rom. J. Phys., 48, 649–657 (2003).
18. A. Kotik, K. Janacek, Biomembranes Vol. 9, Membrane Transport an Interdisciplinary

Approach, p. 169–177 (1977).
19. M. N. Rosculeþ, Analiza Matematicã, vol. 2, p. 456–468 (1966).
20. M. V. Vol’kestein, Molecules and Life, Plennum/Rosetta Eds., p. 14–19 (1974).
21. P. Schuster, Biophysics, Ed. By Walter Hoppe Ltd. Springer Verlag Berlin, p. 330–347 (1983).
22. A. Glodeanu, Rom. J. Phys., 50, 199–210 (2005).


