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Abstract. A few basic facts in the science of the earthquakes are briefly reviewed. An
accumulation, or growth, model is put forward for the focal mechanisms and the critical focal zone of
the earthquakes, which relates the earthquake average recurrence time to the released seismic energy.
The temporal statistical distribution for average recurrence time is introduced for earthquakes, and,
on this basis, the Omori-type distribution in energy is derived, as well as the distribution in
magnitude, by making use of the semi-empirical Gutenberg-Richter law relating seismic energy to
earthquake magnitude. On geometric grounds, the accumulation model suggests the value r = 1/3 for
the Omori parameter in the power-law of energy distribution, which leads to β = 1,17 for the
coefficient in the Gutenberg-Richter recurrence law, in fair agreement with the statistical analysis of
the empirical data. Making use of this value, the empirical Bath’s law is discussed for the average
magnitude of the aftershocks (which is 1.2 less than the magnitude of the main seismic shock), by
assuming that the aftershocks are relaxation events of the seismic zone. The time distribution of the
earthquakes with a fixed average recurrence time is also derived, the earthquake occurrence
prediction is discusssed by means of the average recurrence time and the seismicity rate, and
application of this discussion to the seismic region Vrancea, Romania, is outlined. Finally, a special
effect of non-linear behaviour of the seismic waves is discussed, by describing an exact solution
derived recently for the elastic waves equation with cubic anharmonicities, its relevance, and its
connection to the approximate quasi-plane waves picture. The properties of the seismic activity
accompanying a main seismic shock, both like foreshocks and aftershocks, are relegated to
forthcoming publications.

Key words: statistical distributions, earthquakes, non-linear phenomena, seismic waves,
Vrancea region.

INTRODUCTION

Empirical observations made along the time on the earthquakes revealed a
few salient features of these intriguing natural phenomena which deserve attention
and close scrutiny.
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First, the energy released by the earthquakes extends over a huge energy
scale, from 104 J to 1017 J. The origin of this energy and the mechanisms of
releasing it are still a matter of debate. However, it is widely agreed today that such
seismic energies are built up in the earthquake focal zone, centered around a
seismic focus, by the movement of the tectonic material (organized probably in
plates). The concentration of the seismic energy in the focal zone implies huge
values of mechanical strain and stress, which are released suddenly, now and then,
here and there, by abrupt displacement, fractures, ruptures, violent movements,
along seismic faults of the critical focal zone.

Second, the critical focal zone seems to be very localized as compared to the
spatial range over which the earthquake effects are felt. Indeed, if one assumes that
the seismic energy E is concentrated in a volume of a charactersitic radius R, then
we may represent this energy as = μ μ/μ 3( ) ,eE R  where μ stands for a generic

rigidity and μe represents a generic elasticity modulus. Assuming then representative

values 910μ =  dyn/cm2 and 1110eμ =  dyn/cm2, as suggested by laboratory tests on
typical geological material, one obtains the linear size R of the critical focal zone
ranging from ten meters to a few kilometers. Such an illustrative estimation serves
only to help conceiving the existence of a localized critical focal zone, where the
seismic energy originates. The depth of the earthquakes foci ranges from a few tens
of kilometers to several hundreds of kilometers in the Earth’s crust. The seismic
energy is released as elastic waves, which propagate through an inhomogeneous
geologic material to the Earth’s surface, giving rise to surface waves, with multiple
reflections, refractions, diffractions (as for geometrical rays of waves), and a range
of various local effects. The seismic waves have a typical velocity of a few
kilometers per second, corresponding to an average elastic modulus μe of the order

of 1110  dyn/cm2, for an average density 5 g/cm3 of the geological material, and
typical wavelengths ranging from meters to kilometers.

The third feature of the earthquakes’ studies is the statistical approach. Being
given the large extent and variety of the earthquake occurrence, both in space, time,
energy and number, the earthquakes may exhibit some regular patterns, or some
regularities in their recurrence, as provided by statistical distributions in energy,
time, etc. It is estimated that the total amount of seismic energy released annually
on the Earth is 1018 J, by an average number of 105–106 earthquakes, 80% of this
amount coming from shocks whose energy is higher than 1016J. It is also estimated
that the total amount of released seismic energy is 0.1% of the total amount of heat
produced by the Earth’s interior annually [1]. All these great figures may render a
statistical approach possible. A word of caution is, however, conceivable in this
respect, because many of the small earthquakes may have other causes than being
statistically produced, while the extremely great earthquakes might hardly be
viewed as statistical events, due to their singular character.
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A  BRIEF  HISTORICAL  EXCURSION

Perhaps the first quantitative knowledge on earthquakes comes from Omori
in 1894 [2] who, reportedly, noticed that aftershocks following a major earthquake
are distributed in time according to a power-law of the type −γτ~ ,  where the
exponent γ is slightly greater than unity and τ represents the time elapsed from the
main seismic shock. Such power-laws are of current interest today for statistical
distributions of various quantities. Seismology made a decisive step forward in the
first half of the 20 th century, with the invention of the seismograph and its various
improvements [3]. In 1935 Richter defined the magnitude M of an earthquake [4]
as the decimal logarithm of the displacement recorded by a standard seismograph
in standard conditions. The procedures for estimating the earthquakes’ magnitude,
as well as other characteristics, were greatly improved until 1956, by means of the
travel-time and conversion tables of the seismic waves, culminating in the
Gutenberg-Richter law [5]. Meantime, mechanical models for the focal zone have
been put forward [6], and statistical approaches have been devised, which are being
pursued today [7]. An interesting empirical law was noticed in 1965, known as
Bath’s law [8], according to which the average aftershock would be 1 2.  less in
magnitude than the main seismic shock. Apart from the great interest in causes,
mechanisms, patterns and prediction, the modern seismological research deals
largely today with teritorial zonation, where local seismic effects are analyzed, in
order to establish recommendations for construction and to mitigate the seismic risk
and hazard.

THE  GUTENBERG-RICHTER  LAW

According to the definition given by Richter, the magnitude M of an
earthquake is proportional to the decimal logarithm of the surface seismic energy

2~ ,sE R  where R is a characteristic radius. On the other hand, the seismic energy
goes like the 3rd power of the radius R, so that we may write down

/~ lg ~ 2 lg ~ (2 3) lg .sM E R E  Hence, /lg ~ (3 2) ,E M  or the Gutenberg-Richter law
[5, 9, 10]

= +lg ,E a bM (1)

where b = 1.5, relating the seismic energy E released in an earthquake to its
magnitude M. It is easy to see that this is a semi-empirical law, the coefficient b
being derived on theoretical grounds, while the coefficient 4 4a .  (for energy
measured in J) is obtained by fitting experimental data. The fitting has been
performed on large statistical ensembles, with magnitudes in the range from 5M
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to 7.M  It is worth noting that this range implies a huge energy scale, one unit in
magnitudes standing for a factor 1 510 32.  in energy. For extreme magnitudes,
i.e., for magnitudes lower than 5 or higher than 7, there are deviations from this
linear semi-logarithmic law, as expected. On the other hand, the empirical data in
(1) imply an error of a factor 10 in energy, which may be equally shared by both
the coefficient a and the bM-term. Therefore, one may say that the inaccuracy in
magnitudes is about δ . / = .0 5 0 33.M b  There are various representations for
energy E and magnitude M in the Gutenberg-Richter law, as depending on various
practical conventions, the most used being probably those related to the seismic
moment. Irrespective of such various definitions, the Gutenberg-Richter law of
type (1) is satisfied, and this is taken as a basic point for the considerations made
herein.

The Gutenberg-Richter law can also be written with natural logarithms as

= +ln ,E a bM (2)

where 10a  and = .3 5.b  It can also be represented as = 0 ,bME E e  where
4

0 2 5 10aE e= = . ⋅  J is a threshold energy. This threshold energy may be viewed as
the minimal energy needed for an earthquake to occur, or to be produced, or even
to be felt or recorded. The considerations made herein do not depend critically on
the values acquired by the parameters a and b in (2).

Since 3~E R  one may get a similar law

0ln( ) ( 3) 1 17R R b M M/ = / = . (3)

for the characteristic radius R, where R0 is a threshold length scale associated with
the threshold energy E0. The lengths R and R0 have a double meaning here. On the
one hand, they refer to the critical focal zone, which may have a linear extension R
for the magnitude M (and the corresponding energy E accumulated in this zone), R0

being a minimal length scale associated with the threshold seismic energy. On the
other hand, R and R0 may be viewed as characteristic lengths of the geographical
zone disrupted by the earthquake, as measured by epicentral distances. With such
an interpretation the law given by (3) seems to be well documented by
experimental data [11].

A  MODEL  OF  CRITICAL  FOCAL  ZONE

The rate of the energy accumulation in the seismic focus can be written as

∂ = −
∂

,E gradE
t

v (4)
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where v is the accumulation velocity. For a point-like focus, this velocity may be
taken as being uniform along all three spatial directions, i.e., = = = ,x y zv v v v  and

the spatial derivatives of the energy E can also be taken as having the same value,
∂ /∂ = ∂ /∂ = ∂ /∂ = − + / +0 0( ) ( ),E x E y E z E E R R  where E0 is the seismic threshold
energy, R is the radius of the focal zone and R0 is the length scale of the critical
focal zone, as discussed above. Equation (4) becomes then

0

0
3

E EE v
t R R

+∂ = .
∂ +

(5)

Such an equation is typical for a growth model, with a point-like focus, a
localized growth region, and a high growing rate. For deviations from a point-like
focus, or for a nonuniform growth in all spatial directions, the coefficient 3  in
front of the rhs of equation (5) may have a different value (for instance, for a
uniform growth model along two spatial directions only the coefficient is 2 ). In
order to preserve such a generality we denote this coefficient by 1/r (= 3).
Introducing the accumulation times t R v= /  and = /0 0 ,t R v  where t0 is a
corresponding threshold time, equation (5) becomes

+∂ =
∂ +

0

0

1 ,
E EE

t r t t
(6)

whose solution is

+ / = + /0 01 (1 ) .rt t E E (7)

This power-law is typical for an accumulation, or growth, model. Since
3 3

0 0 0( ) ( )E E R R t t/ = / = /  for a uniform focal zone, it follows 3 1r =  indeed from
(7), in the limit of large energy, large radius and for long times, which checks out
the consistency of the model. We assume therefore = /1 3.r  Equation (7) is the
basic equation of the seismic focus model put forward herein.

THE  OMORI-TYPE  DISTRIBUTION

Suppose that a large number N0 of earthquakes are produced in a long time T.
For a statistical ensemble, the average time for an earthquake to occur is

= /0 0 ,t T N  while 0t t+  is then the average time for an earthquake to occur in time
t, with energy E, as given by (7). Supose that N such earthquakes occur in time T,
such that their frequency is / = / + = / +0 0 0 0 0( ) ( ).N N T t t N t t t  Hence, the temporal
probability distribution
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/⎡ ⎤= − = .⎢ ⎥+ + /⎣ ⎦
0 0

2
0 0

d
( )d d

(1 )
t t t

P t t
t t t t

(8)

The threshold time t0 acquires in this way the meaning of the inverse of the
seismicity rate, i.e., the seismicity rate is / = /0 01 .t N T  Making use of (7) and (8)
one can get straightforwardly the distribution in energy

+
/

= .
+ /

0
1

0

d
( )d

(1 ) r

r E E
P E E

E E
(9)

By analogy with Omori’s observation these power-laws are called Omori-
type distributions. In particular, the distribution given by (9) is the Omori
distribution in energy, and the parameter r (r = 1/3 in this case) is called Omori’s
parameter.

DISTRIBUTION  IN  MAGNITUDES.  BATH’S  LAW.
RECURRENCE  LAW

Making use of the Gutenberg-Richter law 0
bME E e/ =  the distribution in

magnitudes

+=
+ 1( )d d

(1 )
bM

bM r
rbP M M e M

e
(10)

is obtained from Omori’s distribution given by (9), which acquires the well-known
exponential form

−β= β( )d d ,MP M M e M (11)

for 1,bM  where β = = .1 17.rb  Assuming that the aftershocks are governed by
the same exponential distribution for their difference m M= δ  in magnitudes [12],
and are associated with the relaxation of the seismic zone after a major earthquake,
then 0m =  and the average deviation in magnitude is given by dispersion

/δ = 2 1 2( ) ,M m  i.e., 2 2 1 17 1 2/β = / . = . , which is suggestive for the numerical
value indicated by Bath’s empirical law [8]. The analysis of the features of the
seismic activity accompanying a major seismic shock is relegated to forthcoming
publications.

On the other hand, the mean value of the magnitudes, according to the
exponential distribution (11), is = /β1 ,M  so that the deviation of the exponential

distribution from this mean magnitude is given by /δ = − =2 1 2( )M M M

= − /β = .( 2 1) 0 35,  which is in agreement with the experimental error in
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magnitudes, as discussed in connection with the Gutenberg-Richter law above.
This is consistent with the temporal distribution of the average recurrence times
introduced in (8), which leads to the exponential distribution in magnitudes.

The differential distribution of the number ΔN of earthquakes with magnitude
between M and M M+ Δ  produced in a very large time T leads to

= Δ / Δ / /0( ) ( ) ( ),P M N T M N T  where N0 is the total number of earthquakes produced
in time T. Hence the semi-logarithmic law

Δ / = βΔ / − β0ln( ) ln( ) ,N T M t M (12)

for 1bM ,  where 01 t/  is the seismicity rate. This relationship is well documented
by statistical studies for earthquakes of magnitudes in the range 5 7M  [1, 5,
9]. Indeed, in decimal logarithms (12) can also be written as Δ / = −lg( ) ,N T A BM

where 0lg( )A M t= βΔ /  and = β/ .2 3.B  Empirical studies for moderate and strong
seisms (5 7)M  with T = 1 year and 0 1MΔ = .  indicate .0 6,B  which
corresponds to β .1 38,  in fair agreement with 1 17β = .  derived here, and

.4 6,A  which points to a seismicity rate 5 6
01 10t ./  per year; the latter value

indicates that there are ca 105.6 earthquakes per year, which agrees fairly with the
estimation of 105–106 earthquakes per year on the average all over the planet [1].
For lower magnitudes the exact equation (10) indicates less eartquakes than (12)
does, in agreement with empirical data (though there are considerable uncertainties
in estimating the number of small earthquakes), while for very strong earthquakes
the empirical data exhibit deviations from equation (12), as an apparent increase in
the coefficient β. This might be another indication that strong seismic movements
are not part of a statistical ensemble, though a very difficult task in analyzing data
is a reliable estimation of the seismicity rate −1

0 ,t  a critical parameter for such fits.
Deviations from the linear relationship (12) for large values of M can also be
assigned to the phenomenon of magnitude saturation.

It is convenient to introduce the excedence rate of earthquakes, starting with
the probability MP e−β

> =  for magnitudes higher than M. This leads to the
so-called recurrence law

>/ = / − β0ln( ) ln(1 ) ,N T t M (13)

where N>  is the number of earthquakes of magnitude greater than M and

0ln(1 )t/ = α  is sometimes called the parameter of the seismicity rate. The exact

expression for this recurrence law as given by (10) is ln( ) ln(1 )bMN T r e>/ = α − + .
These recurrence laws are well obeyed by the empirical data for magnitudes up to

7,M  where considerable discrepancies are recorded [1, 5, 9]. For practical
purposes, in seismic risk and hazard assessment analysis, it is customary to cut the
magnitude distribution (11) off by an upper bound, to get more satisfying data fits.
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MEAN  RECURRENCE  TIME.  TIME  DISTRIBUTION

According to the basic equation (7), the mean recurrence time for an
earthquake of energy 0

bME E e=  and magnitude M, is given by

= + −0[(1 ) 1].bM rt t e (14)

This time can be viewed as the average succession time for a series of
earthquakes of magnitude M. For convenience, it is also denoted by tr, in order to
distinguish it from the current time t. For 1bM  the exponential form

0
M

rt t eβ= (15)

can be used, where 0 0t T N= /  is the inverse of the seismicity rate. This seismicity

rate can be related to a reference magnitude M0, by writing −β= 00 ,Mt e  i.e., the
parameter of the seismicity rate 0ln(1 )tα = /  is written as α = β 0 ,M  so that the
mean recurrence time becomes

β −= 0( ) ,M M
rt e (16)

and also >= / ,rt T N  according to the recurrence law (13). Actually, the average
recurrence time is defined for the differential number ΔN of earthquakes with
magnitude between M and + Δ ,M M  as given by (12). Making use of equation (12)
one gets the mean recurrence time

0( )
0

1( ) M MM
rt t M e e

M
β −β= /βΔ =

βΔ
(17)

for earthquakes with magnitudes in the range M to + Δ .M M  The recurrence time
given by (16) corresponds formally to 1MβΔ =  (and to the excedence number N>
of earthquakes). The main source of inaccuracy in estimating such mean recurrence
times originates in the seismicity rate / 01 ,t  and, correspondingly, the reference
magnitude M0. In addition, the large earthquakes, whose prediction is of greatest
interest, can be viewed as statistical events only with a limited confidence, due to
the singular nature of their occurrence. The mean recurrence time for such rare
seismic events is long, and, consequently, the errors made in their estimation are
large in absolute value. This indicates that statistical estimation of the mean
recurrence times is affected by great uncertainties, and it should be viewed with
much caution.

Indeed, if one assume the entropy of the seismic ensemble of earthquakes is
given by ~ ln ,S p p  where p is the probability, then the maximum value of this
entropy under the constraint = ,rt t  i.e., under the constraint of fixed mean
recurrence time, leads to the time distribution
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− /= /( ) (1 ) ,rt t
rp t t e (18)

which is also called sometimes the Poisson-like time distribution for earthquake
recurrence. An estimation of the errors implied by this distribution leads to

/δ = − = −2 1 2( ) ( 2 1) ,r rt t t t  i.e., 41%  accuracy in estimating the mean
recurrence time. An analysis of the associated seismic events, i.e., of the foreshock-
and aftershock-type seisms which accompany a major earthquake may reduce such
a large uncertainty in the prediction of the average recurrence time of the great
seismic events. Unfortunately, such an analysis is not available at this time.

THE  VRANCEA  SEISMIC  REGION

Vrancea is the main seismic region of Romania, located just on the appex of
the Carpathian mountains arch, approximately at 45.7° N latitude and 26.6° E
longitude. The chain of the Carpathian mountains makes here an abrupt turn from
the NS direction to the EW direction. The seismic focus in Vrancea is located
between ~ 80 km and ~ 150 km depth, and produces strong earthquakes with
typical magnitude ~ 7–7.5, whose effects propagate, approximately, along the
NE-SW and NW-SE fault directions. The seismicity rate, as estimated from the
data recorded in the last 25  years [13], seems to be 01 100t/ /year (M > 3).
Modern instrumental recording of the earthquakes in Vrancea is performed since
1980, but there seems to be historical recordings from as early as 1000. The
Vrancea earthquakes with magnitude higher than M = 6 (seismic moment) are
shown in Fig. 1 from 1800 to the present.

The seismicity rate indicated above corresponds to a reference magnitude
M0 = 3.9, so that,  making use of  equation (17)  one  gets a  mean  recurrence time

Fig. 1 – Vrancea earthquakes with
magnitude M > 6 from 1800 to the
present. The greatest seismic events
are shown by arrows, and the mean
recurrence time tr = 40 years
corresponds approximately to
     M ~ 7.2–7.9 (seismic moment).
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tr ~ 40 years for earthquakes with magnitudes in the range M ~ 7 to M ~ 7.9. It
corresponds formally to equation (16) βΔ( 1).M  Such a succession time seems to
agree qualitatively with data shown in Fig. 1 for the greatest earthquakes in
Vrancea. However, as said before, such an estimation must be viewed with great
caution. Indeed, first we consider earthquakes with high magitude because, for
lower magnitude, it is difficult to distinguish the regular seisms from those
associated with major earthquakes, as foreshock- and aftershock-type seisms (if
such a distinction exists, and to what extent and relevance). Second, it is difficult to
fully view the earthquakes with high magnitude as statistical events.

A great source of errors is brought by the seismicity rate, a parameter which
is very difficult to estimate. For instance, if one includes the recorded seisms with
magnitude lesser than M = 3 one obtains a seismicity rate 01 130t/ /year for the
Vrancea region, which corresponds to a reference magnitude M0 = 4.15 and leads
to the same average recurrence time ~ 40rt  years for earthquakes with magnitudes
in the range M = 7.2 to M = 7.9, which seems to be in closer agreement with the
data shown in Fig. 1.

The succession of the great seismic events in Vrancea, according to Fig. 1,
seems to obey qualitatively the mean reccurence time ~ 40rt  years, with one
exception between 1838 and 1893–1894–1908, where the time elapsed between the
two major successive earthquakes is about 60 years. This looks like an irregular
situation, which might be explained by the great seismic activity during this entire
period. One may also see in Fig. 1 certain seismic activities which might be
associated with weaker seisms accompanying major earthquakes, of foreshock- and
aftershock-type. If the 41% maximal error in estimating the mean recurrence time
indicated before is assigned to this accompanying seismic activity in the anomalous
period 1838–1908 in Vrancea, then one should allow for at least an equal lapse of
time in order to have another major earthquake. This makes ~ 16 years, which,
indeed, correspond roughly to the approximate time by which the earthquakes in
1893–1894–1908 have been delayed with respect to the one in 1838 (one must also
notice in Fig. 1 the great earthquakes in 1893 and 1894, each of magnitude
M = 7.1; such doublets are intringuingly exhibited occasionally in Vrancea, as
shown in Fig. 1). Such an anomalous situation could be identified by constantly
monitoring the seismic activity, in order to detect intense accompanying seismic
activities, of foreshock- and aftershock-type. Assuming that the next seismic period
in Vrancea is a regular one, then the next major earthquake after the one in 1977
(M = 7.4) would be expected there around 2017. Indeed, as shown in Fig. 1, one
can say that the aftershock-type activity in Vrancea ended around 1990 at the latest,
after the great doublets in 1977 (M = 7.4) and 1986 (M = 7.1). If, starting around
2010, an intense seismic activity is to be recorded in Vrancea, of the foreshock-
type, then the situation might be an anomalous one, similar to the period 1838–
1908, and the next major earthquake would then be postponed untill around 2030;



11 Statistical distributions of earthquakes 205

if, on the contrary, there is to be a rather moderate seismic activity in this period,
then the situation is likely to be a regular one, and the next major earthquake would
be expected around 2017. All these, however, are only very qualitative estimations,
made here for the purpose of temptingly testing the theoretical results presented
herein, and for illustrating the kind of analytical discussion they may allow for.

NON-LINEAR  EFFECTS

Apart from statistical theories, another topic much debated in seismology is
the understanding of the non-linear effects associated with the propagation of the
seismic energy, and with the seismic waves in general. This is an issue in non-
linear elasticity, and an instance of an exact solution to a non-linear wave equation
is briefly presented here, as well as its relation to the quasi-plane waves [14]. The
intriguing issue in this connection is that, if non-linearities are present, exact
solutions, as the one presented below, are unphysical, and still the empirical
observations are compatible with a limited type of quasi-linear behaviour in the
propagation of the seismic energy and the associated effects. It is shown below that
indeed, there are local amplification factors in the non-linear effects of the
propagation of the seismic energy, which, however, still allow for a quasi-linear
regime.

The first non-linear correction to the wave equation comes from the cubic
anharmonicities, which lead to an elastic energy

( )λ= + μ + + + ,∫ 2 2 2 31 1d
2 3 3ii ij ij jk ki ij kk iiE u u Au u u Bu u Cur (19)

for an isotropic elastic body, where λ and μ are the usual Lame coefficients, A, B,
C are constant coefficients, and (1 2)( )ij i j j i k i k ju u x u x u x u x= / ∂ /∂ + ∂ /∂ + ∂ /∂ ⋅ ∂ /∂  is

the Cartesian (finite-) strain tensor. It is assumed that the coefficients in (19) are
such as the stability conditions are satisfied. First, a transverse displacement, say,

2 1( )u x  is not affected by the cubic anharmonicities above, so that the corresponding
linear wave equation is left unchanged (the transverse waves propagate with

velocity = μ/ρ ,tv  where ρ is the density of the body).

A longitudinal displacement 1 1( ) ( )u x u x=  is, however, subjected to the non-

linear equation ∂ /∂ = ∂ /∂ + ∂ /∂2 2 2 2 2 2( )( ),lu t u x v v u x  where ( 2 )lv = λ + μ /ρ  is the

velocity of the longitudinal waves, and 2 [3( 2 ) 2( 3 )]v A B c= λ + μ + + + /ρ  is a
characteristic square velocity. Leaving aside again the stability conditions [14], and
denoting = ∂ /∂ + /2 2 ,lU u x v v  this non-linear equation becomes
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∂ /∂ = / ∂ /∂2 2 2 2 2 2( 2) .U t v U x (20)

This equation is the continuum limit of the Fermi-Pasta-Ulam equation [14].
Its solution, and solutions of other, similar, equations have been analyzed recently
by making use of the Lie algebra of the equation symmetry group and the
prolongation technique [15]. The solution ( ) ( ) ( )U t x g t f x, =  of equation (20) can
be obtained by elementary quadratures. The time dependence is given by [14]

⎡ ⎤− ω
⎢ ⎥= − ω
⎢ ⎥+ ω⎣ ⎦

2
1 ( 3 )

( ) 3 1 ( ),
1 ( 3 )

cn s t
g t s sgn

cn s t
(21)

where (0)s g= −  =( (0) 0),g  ω is a constant of integration and cn is the Jacobi
elliptic cosine-amplitude. Function ( )g t  given by (21) is a periodic function with

period ω =3 4 ,s t K  where K is the complete elliptic integral π/ ,( 2 )F k  (~ 4)

for = + /2 (2 3) 4.k  It has singularities at ω = + /3 4 ( 1 2),s t K n  where n is an

integer. These singularities make the solution of eq. (20) unphysical. The spatial

dependence ( )f x  is given by the implicit equation / − / , / , / ;3( ) 1 (1 2 1 3 3 2f h F

− / = ω / /31 ( ) ) 3 2 ,f h x v h  where F is the Gauss hypergeometric function and

(0)h f=  is another constant of integration ( ′ =( (0) 0)f  [14]. Function f goes like

ω/ + ω/2 2 2~ ( ) ( 2 )f h sgn v v x  for ~ 0,x  and ω/ 2 2~ ( 2 )f v x  at the infinite

→ ±∞( ).x  It is worth noting that ( )f x  is boundless for spatial boundaries placed
at the infinite, which adds to the unphysical character of the solution. The general
solution of the non-linear equation for the longitudinal strain ,( )u t x  reads then

, = − − − / +∫ 2
0 00

( ) ( ) d ( ) ( ) ,
x

lu t x g t t x f x x v v x c (22)

where the origin of time t0 and the origin of space x0 are introduced, and c is
another constant of integration. The nature of this solution is worth discussing.
First, it is worth noting that the displacement given by (22) implies large strain
(and stress) values at the boundary of the spatial region, which is consistent with
the accumulation model of the critical focal zone employed herein. Second, these
large strain and stress values may lead in time to ruptures at the boundaries of the
focal zone (or at the boundaries of the critical seismic region), as a consequence of
the boundless increase of the time dependence (which is singular at certain times,
as noted above). These ruptures may propagate, with a nonuniform velocity, which
represents a distinct mechanism of dissipation of the seismic energy in the critical
zone affected by nonlinearities. It is not restricted to cubic anharmonicities, higher-
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order non-linear contributions to the wave equation leading to a similar behaviour
[14]. Third, it is worth noting that the total energy conserves, but it is nonuniformly
distributed, such that ruptures may appear in time at the boundaries of the spatial
region. The energy flow at the boundaries increases also boundlesly in time. The
process looks rather like a vibration than a wave propagation. All these features
make the solution unphysical. Exact, unphysical solutions of nonlinear type
described above are therefore more appropriate for the critical focal zone and for
the seismic region disrupted by the earthquakes.

After all this seismic energy is dissipated in ruptures and damage of the
elastic body, the nonlinear contributions to the wave equation may be viewed as
perturbation to the plane wave solutions of the linear equation. Indeed, introducing
the perturbation parameter 2( )lv vε = /  the equation for the longitudinal displacement

may be written as ′′ ′ ′′− = ε2 2 ,l lu v u v u u  whose solution reads [14]

= ω − + ε + ω − +

+ ε + ω − − ω − + ...

2 2

2 3 4 2

1cos( ) ( )cos[2( )]
16

1 ( ) [cos[3( )] cos( )]
128

l

l

u a t kx a k x v t t kx

a k x v t t kx t kx
(23)

where a is the amplitude, lv kω =  is the frequency and k is the wavevector of the
elementary plane wave. The solution given by (23) is, actually, a triple expansion
in powers of the perturbation parameter ε, the ratio ak of the amplitude to the
wavelength, and the ratio lk of a characteristic length ll x v t= +  to the wavelength.
The solution (23) is actually an asymptotic series, and it has a limited validity over
finite distances and times, providing that the amplitude is much smaller than the
wavelength. Such a wave may be viewed as a quasi-plane wave, i.e., a plane wave
distorted by higher-order harmonics of limited validity in space and time. It is
worth noting the amplification factor F of the order of 21 16F alk+ ε /  (in
displacement) brought by the non-linear effects to such quasi-plane waves,
amplification which is well-documented in the analysis of the local seismic effects
due to non-linearities. An estimation of the distribution of the seismic energy
originating in a localized focal zone shows that the long wavelengths and small
amplitudes are favoured, the ratio ak  being of the order of 10–2–10–4. Therefore,
one may use the quasi-plane waves pictures up to distances l very large in
comparison with the wavelengths [14].

Another worth noting nonlinear phenomenon appears in the nonlinear
coupling between a longitudinal displacement and a transverse one, propagating in
the same direction. Beside higher-order harmonics and amplification factors, there
may appear resonances at certain frequencies, due to the combined-frequency
phenomenon, as, for instance, at the transverse wave frequency ω =2

= ω / + /1( 2)(1 ),t lv v  where ω1 is the frequency of the longitudinal wave [14]. Such
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resonances depend on the ratio t lv v/  of the waves velocities. Another nonlinear
coupling arises, for instance, from longitudinal displacements of the type ,1 1( )u x

,2 2( )u x  3 3( ),u x  which might be relevant for the dynamics of the accumulation
model of the critical focal zone. There seems not to be a simple treatment of such
coupled non-linear equations.

CONCLUSIONS

There seems to be at least three basic features pertaining to the science of the
earthquakes, according to the present image of this science. First, the energy of the
earthquakes is distributed over a huge scale, according to the semi-empirical
Gutenberg-Richter law, as given by (1) or (2), relating the seismic energy to
magnitude M. The Gutenberg-Richter coefficient b = 3.5 is worth noting here
(equation (2)). Second, the seismic energy originates in a rather restricted critical
focal zone, of a characteristic linear size given by (3); at the same time, equation
(3) refers also to an epicentral length scale characteristic of the seismic region
disrupted by the earthquake. Third, the large variety of the earthquakes in energy,
magnitude, number, space and time suggests a statistical approach, as based on
their various distributions. Such a statistical approach is also suggested by the
distribution in magnitudes of the differential number of earthquakes (equation
(12)), by a similar distribution of the earthquakes with magnitudes exceeding a
given value (excedence, or recurrence law given by equation (13)), by the Omori
temporal distribution of the aftershocks, by the average aftershock magnitude
(Bath’s law, this aftershock magnitude being 1.2 less than the magnitude of the
main shock), and by the time Poisson-like distribution of the recurrence times
(equation (18)). All these laws are semi-empirical, having a limited validity. Such a
limitation comes mainly from the fact that very small seisms, or very great
earthquakes, by their own nature, do not reliably belong to a statistical ensemble. It
is also woth noting an intriguing issue much debated today in seismology,
regarding the effects of the non-linearities on the propagation of the seismic
energy, and the corresponding estimation of such local effects, especially in studies
of seismic risk and hazard.

An attempt at a systematic understanding of such basic features in seismology
is made here, by introducing an accumulation, or growth, model for the
concentration of the seismic energy in the critical focal zone. This model relates the
accumulation time to the seimic energy (equation (7)), and introduces a
characteristic parameter r, whose value r = 1/3 is derived on geometrical grounds.
It turns out that this parameter r is an Omori-type parameter. Indeed, the second
main theoretical point made here is the interpretation of the accumulation time as
the mean recurrence time of the earthquakes with corresponding energy (and
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magnitude), as given by the accumulation model. On this basis, the temporal
distribution (8) of the earthquake mean recurrence times is derived, the Omori
distribution in energy (equation (9)) and the exponential distribution in magnitudes
with the exponent 3 5 3 1 17brβ = = . / = .  (equations (10) and (11)). The analysis of
the seismic activity accompanying a major earthquake is left for forthcoming
publications. By assuming the aftershocks as reflecting the relaxation of the

seismic zone one gets 2 1 2Mδ = /β = .  for the amount by which the average
deviation in magnitudes would be recorded for aftershocks, as being suggestive for
Bath’s law. The differential distribution of the earthquakes in magnitudes (12), as
well as the excedence rate (recurrence law) (13) are derived from the exponential
distribution in magnitudes with β = 1.17, in fair agreement with empirical
observations. The time Poisson-like distribution of earthquakes is also derived for a
fixed mean recurence time (equation (18)), and the differential mean recurrence
time is given for earthquakes with magnitude in the range M to M M+ Δ  (equation
(17)). The errors in estimating both the magnitude and time distributions are
discussed, and the errors asssociated with the seismicity rate 01 t/  are shown to be
critical for the statistical prediction of long succession times of the great
earthquakes (t0 being also a threshold time introduced by the accumulation model).
An application of these results is made to the great earthquakes in the seismic
region Vrancea, Romania, in the past 200  years.

It is shown, by analyzing the cubic anharmonic corrections to the elastic
waves equation corresponding to longitudinal displacements, that the nonlinearities
have a disruptive effect on the critical focal zone, or the epicentral region greatly
affected by the earthquake. The exact solution to this equation (equations (21) and
(22)) has an unphysical character, exhibiting time singularities and a boundless
increase at the boundaries of the spatial region. Such an unphysical behaviour is
also specific to higher-order nonlinearities. Consequently, ruptures may appear at
the boundaries of the critical zone, which may propagate in the whole body of the
region. However, the propagating seismic energy is distributed mainly on long
wavelengths and small amplitudes, such that for small values of the ratio of the
amplitude to the wavelength the linear picture of quasi-plane waves is still valid, in
a perturbational picture, for limited distances and times (as controlled by the ratio
of a characteristic length l to the wavelength, according to equation (23)). As a
consequence of the nonlinearirites the quasi-plane waves are distorted by higher-
order harmonics, and exhibit local amplification factors in displacement, velocity
and acceleration, as documented by empirical evidence. The nonlinearities may
lead, in this perturbational approach, to other effects, as resonances, combined-
frequency phenomenon, or nonlinear coupling between various kinds of elastic
waves, which enriches considerably the linear phenomenology of waves
propagation.
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