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Abstract. The framework of self-consistent models and their predictive power for
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nuclei as well as to laser-nuclear physics are reviewed.
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1. INTRODUCTION

Throughout the years nuclear structure physics has revealed interesting
phenomena related to nuclear ground-state properties and excitations such
as octupole deformations in the ground state, triaxial deformations, the phe-
nomena of neutron skins and halos, Boromean systems, exotic excitations like
Pygmy resonances and many more. The theoretical description of a nucleus
deals with two regimes in which approximations have to be made. Firstly, since
we are dealing with a many-body system, we need to introduce many-body
approximations. Secondly, the in-medium nucleon-nucleon interaction needs
to be parametrized and cannot (yet) be deduced from QCD. This is different
in atomic physics, for example, where the interaction mediated by photons is
known to a very high degree1 and the main approximations are dealing with
the many-body aspect. Moreover, nuclei are self-organized systems and do
not possess an external potential as, for example, atoms. These properties of

1 Quantum Electrodynamics delivers most precise predictions and yet no discrepancy with
experiment has been found.
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the nucleus make nuclear physics both exciting and extremely difficult. They
are also the reason for the many different nuclear models that have been built
throughout the decades: the simple liquid-drop formula, the phenomenological
shell modell, the macroscopic-microscopic method, self-consistent mean-field
models, Greensfunction-Monte-Carlo, shell model and no-core shell model,
and many others. In this contribution, self-consistent mean-field models will
be discussed and illustrated with a few typical applications.

2. FRAMEWORK

The ansatz of self-consistent mean-field models (for a comprehensive re-
view see Ref. [1]) is traditionally based on the parametrization of the effective
nucleon-nucleon interaction between point-like nucleons. The modern way is
the construction of the energy functional which can incorporate terms that
can not be formulated in terms of effective interactions.

The relativistic mean-field (RMF) model can be formulated in terms of a
Lagrangian employing the relevant degrees of freedom which are nucleon and
the boson fields:

L = Lfree
nucleon + Lfree

meson + Llin
coupl + Lnonlin

coupl . (1)

The first parts are Lagrangians for free nucleons and mesons and the photon:

Lfree
nucleon = ˆ̄ψ(iγµ∂

µ −m)ψ̂, (2)

Lfree
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1
2
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2
�̂Bµν · �̂Bµν −m2

ρ�̂ρµ · �̂ρµ
)
− 1

4
F̂µν F̂

µν . (3)

It is worth mentioning that these meson fields have only loose correspondence
with the physical meson spectrum. Mean-field models employing contact in-
teractions between nucleons have a comparable predictive power for nuclear
ground-state observables and excited states [2, 3, 4].

A theory of interacting fields is achieved by introducing minimal cou-
plings between the mesons/photon and the nucleonic densities and currents.

Llin
coupl = −gσσ̂

ˆ̄ψψ̂ − gωω̂µ
ˆ̄ψγµψ̂ − gρ�̂ρµ · ˆ̄ψ�τγµψ̂ − eÂµ

ˆ̄ψ
1 + τ3

2
γµψ̂. (4)

The density dependence of the scalar field needs to be altered to reproduce
the compressibility of nuclear matter and to obtain a quantitative description
of nuclei:

Lnonlin
coupl =

1
2
m2

σσ̂
2 − Uσ[σ̂]. (5)
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This is often done by an expansion in powers of the field. The field ten-
sors of the mesons are written down in direct analogy to the electromagnetic
field tensor.

Each term in the Lagrangian introduces a coupling constant that needs
to be adjusted which will be discussed later in this section. The equations of
motion can be obtained in the standard fashion by the Euler-Lagrange equa-
tions. This model is free of assumptions on the nuclear potential or density
distributions which are the outcome of a (converged) calculation. Self consis-
tency can produce effects such as density depletion in superheavy nuclei which
are less likely to occur in other approaches.

The binding properties of nuclear matter and nuclei are generated from
the strong scalar and vector fields, VS = gσσ ≈ −350 MeV, VV = gωω

0 ≈
≈ +300 MeV, adding up to V = VS + VV ≈ −50 MeV. They add up with
the same sign to generate the strong spin-orbit potential in nuclei, which is
given by

Vls ∝ d

dr
(VS − VV γ0)�l · �s. (6)

This spin-orbit force emerges from the covariant formalism with right sign and
magnitude without introducing additional parameters. This is where relativity
shows up most clearly in these covariant models – the dynamics of the nucleons
on the contrary justifies the use of non-relativistic models.

Self-consistent models for the nucleus have recently experienced a rein-
terpretation in terms of effective field theory and density functional theory [5],
which partly explains their success in accurately describing nuclear ground-
state properties. As effective field theories for nucleonic degrees of freedom,
they are constructed to incorporate explicitly physics below a certain energy
scale λ, which is of O (1 GeV). Short-distance physics and correlations, vac-
uum polarization and all effects at higher energies are being absorbed into the
various interaction terms and coupling constants.

The Hohenberg-Kohn theorem [6, 7] states that the energy of a many-
body state is a unique functional of its density. Thus, in principle, it is possible
to achieve an exact treatment of such a system if the right energy functional
is found. In such a description, all correlations are present in the energy and
the density distribution (not in the wave-function, however, which is a Slater-
determinant of Kohn-Sham orbitals). For the description of a self-bound nu-
clear system in the intrinsic frame, generalizations of this theorem are nec-
essary and available [8]. Unfortunately, these theorems are non-constructive
and provide no handle for the development of such functionals. Thus, current
efforts involve ways to systematically construct these functionals and subse-
quently improve them. As mentioned before, each term introduced in the
ansatz of the model is associated with a free parameter. These parameters
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Fig. 1 – Errors in percent for the mean-field forces as indicated and the
observables (from top to bottom) surface thickness, diffraction radius, rms
radius, and binding energy. Dark columns indicate that this observable has
not been fitted, light colums indicate observables which have been part of

the adjustment procedure.

(between 6 and 12) are being fitted to experimental data of nuclear ground-
state properties. It is interesting to assess the quality of various forces with
different adjustment procedures for various observables. Fig. 1 summarizes
such a comparison for various Skyrme forces (SkM∗, SkP, SLy4, SkI1, SkI3,
SkI4), a point-coupling RMF force (PC-F1) and two standard RMF forces
(NL-Z and NL3). Shown is the error in percent for the observables (from top
to bottom) surface thickness, diffraction radius, rms radius, and binding en-
ergy. These errors have been averaged over a selection of nuclei throughout the
nuclear chart. Starting with the binding energy, this observable is always part
of the adjustment procedure, and the quality of modern models can describe
it with an accuracy below 0.5%. The rms radius as the prominent information
about the nuclear density distribution is usually taken into account in the ad-
justment, and its mean error lies below 1%. The other two form-factor-related
observables, diffraction radius and surface thickness, are in some cases not
taken into account in the adjustment. As can be inferred from the figure, its
inclusion in the adjustment procedure can lead to a slightly better description.
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The biggest effect, however, is seen for the surface thickness. Firstly, the error
scale is larger and ranges within several percent error. Secondly, an inclusion
of this observable in the adjustment procedure can considerably decrease its
error. Self-consistent mean-field models tend to underestimate the size of the
surface thickness. This can be attributed to missing correlations and/or the
missing long-range (pion) dynamics.

3. NUCLEAR MOLECULAR STATES

The existence of nuclear molecules was discovered [9] in experiments on
the resonances observed in excitation functions of elastic and inelastic scatter-
ing of 12C on 12C [10, 11] In this section, we report on some examples for the
occurence of clustering in light nuclei within the RMF model [12].
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Fig. 2 – Reflection-symmetric and axialsymmetric PES of 16O. Parts were
the calculation does not converge are left out.

In order to detect clustering for ground and excited states, we compute
the energy of the system as a function of deformation. The cuts through the
potential energy surface (PES) are calculated in axial symmetry for reflection-
symmetric and -asymmetric shapes using a constraint on the total quadrupole
momentQ20 of the nucleus. This is achieved by adding −λ Q̂20 to the Hamilton
operator and minimizing 〈Ĥ − λQ̂20〉. All other multipole moments that are
allowed by the symmetry of the calculation are not constrained and adjust
themselves corresponding to the solution of minimal energy. So, in contrast to
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the macroscopic-microscopic approach [13], we are not operating in a limited
deformation space. On the other hand, we are not necessarily exactly following
the gradient in the multidimensional PES which would only be the case if the
fission valley would be parallel to the Q20 direction [14].

The energy of the system is minimized using the damped gradient itera-
tion method [15]. The mean-field equations are solved in coordinate space em-
ploying derivatives as matrix multiplications in Fourier space. We do not cor-
rect spurious rotational or vibrational motion, corresponding to zero-point en-
ergies which would lower the total energy and modify the structure of the PES.

As the first system, we consider 16O. Its potential energy surface can
be seen in Fig. 2. The PES reveals two local minima corresponding to two
isomeric states with a cluster configuration. At β2 = 0.97, at an energy of
about 15 MeV above the ground-state energy, a α−8Be–α configuration is
found. The 8Be nucleus is, however, not in its groundstate. At β2 = 3.78, a
local minimum in the PES corresponds to a chain of 4 α-particels at an energy
of around 36 MeV. The following PES at larger deformations corresponds to
symmetric fission of oxygen into two 8Be nuclei. In each fragment, a double-
α-structure is clearly visible.
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Fig. 3 – Reflection-symmetric and axialsymmetric PES of 32S. Parts were
the calculation does not converge are left out.

Another interesting system is 32S corresponding to two times 16O. The
reflection-symmetric PES can be seen in Fig. 3. The system has a deformed
ground state at β2 = 0.27. Its density distribution corresponds to a twofold
structure with lowered density in the middle of the two halfes. At β2 = 1.04,



7 Self-consistent mean-field models 329

r [
fm

]

0
1

2
3

4
5

6
7

8
9

z [fm]

0
2

4
6

8
10

12
14

D
ensity [1/fm

^3]

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Density of 16−16 beta2=1.04

Fig. 4 – Baryon Density of 32S at β2 = 1.04.

a second local minimum occurs. The density distribution exhibits a clus-
ter structure corresponding to two 16O nuclei, though no pronounced neck
between the fragments has built (see also Fig. 4). For larger deformations,
a neck develops and the systems fissions symmetrically. The isomeric state
found here can be associated with a two-16O-cluster state.

Investigations of these and similar systems in the framework of the Skyrme-
Hartree-Fock approach can be found in Ref. [16].

4. SUPERHEAVY NUCLEI

Superheavy nuclei are nuclei with proton numbers above Z ≈ 110. These
systems owe their stability only to quantum-mechanical shell effects. The
liquid-drop description predicts no stable ground state. While the nucleon-
nucleon interaction is short-range and saturating, the Coulomb force, even
though it is much weaker, has long-range nature. Thus, while a proton can
only interact with its neighbors through the nuclear force, it feels all surround-
ing protons. Due to shell effects, however, the system can gain stability, and
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spontaneous fission proceeds through the fission barrier. For these systems,
alpha decay and spontaneous fission become competing decay modes. While
superheavy nuclei can on earth be only produced in experiments with heavy
ions, they might come to existence in the universe in processes such as super-
nova explosions. With respect to the testing of nuclear models, superheavy
nuclei act as magnifying glasses for nuclear structure effects that are present
but less visible in nuclei closer to stability.

In the following, we will examine the stability of a selection of superheavy
nuclei with respect to spontaneous fission. We will first discuss spontaneous
fission in actinide nuclei. A typical fission barrier is shown in Fig. 5. The nu-
cleus 252Cf possesses a symmetric fission barrier and the asymmetric solution,
which is energetically favorable. At a deformation of β2 = 1.0, an isomeric
state of approximately the same energy as the ground state is present. The
figure furthermore displays symmetric and asymmetric solutions for separated
fragments which intersect the branches of the elongated nuclear system with a
neck. These various branches are separated from each other by small barriers
in the multi-dimensional potential energy surface. It is a present challenge to
obtain smooth fission and fusion barriers within these approaches.
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Fig. 5 – Symmetric fission barrier (dashed line), asymmetric fission barrier
(full line) and solutions for two separate fragments with combinations as

indicated.

The systematics of fission barriers for superheavy nuclei ranging between
Z = 108−120 is shown in Fig. 6 [17]. The symmetric barriers are shown with
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full lines, the asymmetric barriers (allowing reflection-asymmetric shapes) are
shown with a dashed line. Note that the first barrier is always reflection-
symmetric. Going up in Z and N we find a transition from well-deformed
nuclei via transitional nuclei displaying shape isomerism to spherical nuclei
at the upper right end of the chart. The barriers in the transitional region
become rather small. The inclusion of asymmetry makes the second (symmet-
ric) barrier vanish for Z ≥ 114, thus these superheavy systems only have one
single barrier to tunnel through. This is an important difference to the case
of actinide nuclei which usually possess two barriers.

The same barriers, calculated with Skyrme forces, show the same general
trends, but exceed the RMF barriers for high charge numbers considerably.
A similar situation occurs already for actinide nuclei: while RMF produces
rather low and sometimes too low barriers, SHF tends to larger barriers [17].

These different predictions are rather model dependent than force depen-
dent2 The reason for these differences is related to the different macroscopic
and shell-structure-related properties of the various forces. For example, while
the RMF forces predict the magic numbers at Z = 120 and N = 172, 184, SHF
forces place them at Z = 114, 120, 126 and N = 184. Moreover, the asymme-
try energy of standard RMF forces with a4 ≈ 38 MeV is too large compared
to the empirical value of a4 ≈ 30 − 34 MeV. Skyrme forces perfom better at
reproducing this result. The search for the underlying model properties that
lead to these different predictions is still ongoing. This situation, however,
indicates that at the present stage reliable predictions for the fission barriers
of superheavy elements, and their corresponding life times, cannot be made.

5. LASER-NUCLEAR PHYSICS

Present and near-future laser facilities will provide a gateway to direct
(electromagnetic) laser-nucleus interactions. Nuclear quantum optics involv-
ing x-ray laser facilities will soon demonstrate direct laser-nucleus interactions
[18]. An application involving strong laser fields in the optical regime is the
dynamic (AC) Stark shift of proton states in atomic nuclei. Similarly to the
case of a constant electric field, in an oscillating laser field applied to an atom
(nucleus) the electron (proton) levels experiences a small shift. These shifts
may serve as a signal for direct laser-nucleus interactions.

An increase of the laser frequency and field strength can be achieved by
head-on collisions of the nuclei and the laser pulses. In the rest frame of the
nucleus, the Doppler shifted electric field strength EN and the frequency νN

2 This is true if the adjustment protocols of the forces do not differ dramatically.
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Fig. 6 – Reflection-symmetric (full line) and reflection-asymmetric (dotted
line) fission barriers calculated with the RMF force NL-Z2.

are given by

EN =

√
1 + β

1 − β
EL = (1 + β)γEL , (7)

νN =

√
1 + β

1 − β
νL = (1 + β)γνL , (8)

where subscript N denotes the nuclear rest frame and L the laboratory frame,
respectively. The laser-nucleus interaction is treated in the electric dipole
approximation, in which the (non-relativistic) interaction term in the length
gauge is given by [19, 20]

HI = −e �E(t) · �r . (9)

Here, e = |e| is the electron charge, �E(t) is the electric field, and �r the position
operator. For light linearly polarized in z-direction, this reduces to HI =
= −eE(t)z. The total Hamiltonian of our system is thus

H = H0 +HI , (10)
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in the nuclear rest frame for the nuclei as indicated, and proton rms radii
(lower row) as a function of laser intensity in the nuclear rest frame. Each
line in the upper figures corresponds to a Stark shift of a proton single-
particle level. The widths of these bands characterize the spread in these
shifts. In the lower figure, the square dots indicate the calculated results,

which for convenience are connected by the thin line.

where H0 denotes the nuclear Hamilton operator that is specified by the nu-
clear model employed and has been described in Section 2.

A few comments on the choice of this interaction are in order. The spatial
dependence of the electric laser field is neglected in the dipole approximation
due to the small extension of the nucleus of the order of a few femtometers.
The magnetic fields can also be neglected due to the smallness of the laser-
nucleus interaction. Here we have an important difference to atomic systems:
intensities considered large on atomic scales (they compete with the Coulomb
force of the nucleus), typically are still weak as compared to the much stronger
force between nucleons. Hence a non-relativistic treatment is justified in our
case. The nuclear model employed in this study provides a covariant frame-
work for the nuclear ground-state description. Note, however, that the nucle-
ons within the nucleus move non-relativistically. The predominant relativistic
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feature is the strong spin-orbit force in nuclei, which is an intrinsic ingredient
in a covariant description employing strong scalar and vector fields.

The Stark shifts of the single-proton states |n〉 are given by

∆En =
1
2

∑
m�=n

〈n|HI |m〉〈m|HI |n〉
εn − εm

. (11)

The states |n〉 are taken from the relativistic mean-field calculation, and the
matrix elements of the dipole operator sandwiched between two states are
calculated numerically.

The proton rms radius is defined as [21]

rp
rms =

√∫
d3xr2ρp(�x)∫
d3xρp(�x)

, (12)

with r =
√
x2 + y2 + z2, ρp(�x) is the proton point density. Note that this

definition also holds for non-spherical density distributions. The rms radius is
related to the spatial extension of the density distribution. The experimentally
accessible quantity in nuclei is the nuclear charge radius which can be extracted
from the corresponding measured form factor.

The AC Stark shifts of single proton states in the nuclei 168Er and 240Pu,
as well as the corresponding rms proton radii are displayed in Fig. 7. We have
chosen these nuclei as typical representatives of intermediate and heavy nuclei.
Their lowest measured E1 excitations lie at 1.359 MeV (168Er) and 0.555 MeV
(240Pu), respectively [22]. Thus, transitions will not be excited by the con-
sidered laser energies of O(keV) in the nuclear rest frame. Lower excitations
of even parity would require two- or higher-order photon processes, and their
energies are still more than 20 keV above the ground-state energy. Thus the
Stark effect can be treated separately from nuclear excitation mechanisms.

Shifts of ≈ 1 keV are reached at intensities of roughly 1032 W/cm2

for the systems discussed here (intensities of 1034 W/cm2 are necessary for
lighter systems such as oxygen). These shifts are approximately a factor of
10− 1 000 smaller than typical energy differences of single-particle levels close
to the Fermi edge. As expected, in absolute terms, they are much larger than
shifts appearing in atomic systems, but may also surpass them in relative
terms. The size of the shifts depends both on the matrix elements 〈m|HI |n〉
as well as on the number of states contributing with dipole moments and their
corresponding single-particle energies.
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6. OUTLOOK

Self-consistent mean-field models have reached a high predictive power
for the description of nuclear ground-state observables. Furthermore, they
can be applied to excited states, a topic that has not been touched in this
contribution. Their application can increase our understanding of phenomena
like nuclear clustering, superheavy nuclei, and even the interplay of laser fields
with nuclei. As was discussed, their predictions for fission barriers allow no
quantitative conclusions at this stage, since the uncertainties displayed by
a selection of models are too large. Thus, further improvements of these
approaches are mandatory in the near future.
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