
Romanian Reports in Physics, Vol. 59, No. 2, P. 397–409, 2007

Dedicated to Prof. Dorin N. Poenaru’s
70th Anniversary

ON COULOMBIAN THRESHOLD STATES

D. CUTOIU, C. HATEGAN, R.A. IONESCU

Institute of Atomic Physics, Bucharest, P.O. Box MG-6, Romania

(Received February 7, 2007)

Abstract. This work does approach the description of Coulombian Threshold States
in terms of Nuclear Reactions Theory. The physical basis of this approach is the spatial
extension, outside the nucleus radius, of the Coulombian Threshold States. The spatial ex-
tension factor is discussed according to different physical interpretations. The generalization
of the one-channel spatial factor to multichannel reaction systems is obtained. The problem
of the spreading of the threshold state in continuum of statistical levels is approached too.
The implication of Coulombian Threshold States in problem of Optical Potential Threshold
Anomaly is also discussed.
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1. INTRODUCTION

The highly excited nuclear states (Eexc ∼ Break-Up Threshold) figured
as states with high complexity, requiring statistical approaches for their de-
scriptions. On the other side, one could observe sometimes levels which are
discernable on the statistical background.The inhibition of mixing of a special
level with the statistical levels is related to a specific nuclear reaction mech-
anism. For example the Isobaric Nuclear Resonances do not mix with the
statistical levels because of Isospin conservation. Another possible mechanism
inhibiting the mixing of a special state with the statistical background could be
(different) spatial localizations. If the statistical levels are spatially confined to
interior of the nucleus and if the special state is extended outside of the channel
radius then the overlap of the two kinds of states is diminished; in other words
the special state avoids its mixing with statistical levels and it is experimen-
tally discerned as a level superposed on statistical background. The near-zero
energy states, both below and above Break-Up Threshold, do fulfill this con-
dition; the wave function’s tail does extend out of nucleus radius because of
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slow decrease of its spatial asymptotic form, exp(ikr), with k near zero value.
(For negative energies k = i|k|; for positive energies, k = k1 − ik2 and k1 and
k2, positive.) These states are located near zero-energy (in vicinity of escape
threshold), i.e. near transition point between Discret and Continuum parts
of the Spectrum. One can enumerate, in this respect, various types of spatial
extended states both in nuclear and atomic systems: virtual neutron states,
neutron halo-states, zero-energy neutron single particle resonances, kinemat-
ical threshold states (of astrophysical interest), fission vibrational states (de-
fined with respect to a deformation variable instead of a spatial one), atomic
Rydberg states. One can add also the Coulombian Threshold States, related
to Coulombian and Centrifugal Threshold. The description of this last type
of states is subject of the present work.

The Coulombian Threshold States are connected with energy of two-
body Break-Up of a nucleus, C = ai + Xi, i = 1, 2, . . . , n. These levels are
composed mostly of clusters ai and Xi in a definite orbital state. The ex-
citation energy of the cluster level π is Eπ = Qi, where Qi is a Break-Up
(“threshold”) energy for the decomposition C = ai + Xi. The cluster levels
of this type were named “Threshold States” (see Baz A.I., 1959; Baz A.I.,
Zeldovich I.B., and Perelomov A.M., 1971). The main characteristics of the
Coulombian Threshold States are:

– they are correlated with fragmentation of the nucleus into two com-
ponents with zero kinetic energy, Eπ − (Bi + Bc + Bl) = 0 (Bn,l,c – binding,
centrifugal and Coulomb energies);

– the two fragments have definite relative angular momentum l;
– the Threshold States have a large reduced width for decay in threshold

channel i, γ2
πi = γ2

W , and a negligeable reduced width for decay in other open
channels a, γ2

πa ∼ 0, (γ2
W – Wigner unit).

In spite of several theoretical approaches (see Kukulin V.I., Krasnopol-
sky V.M., and Horacek J., 1989), the description of Threshold States is still
vague. Qualitative treatments, based on peculiar attractive surface potential
just at top of the Coulombian barrier, were proposed. Such barrier potentials
could influence the threshold channel decay width but they do not account
for other main properties of these states. One needs an approach which de-
scribes firstly the global characteristics of Coulombian Threshold States as:
energy positions, multichannel decay widths, spreadig width into statistical
levels, rotational properties, etc. A Reaction Model for Coulombian Thresh-
old States, responding to these requirements, is presented here. Its physical
idea is the spatial extension, outside nuclear radius, of the Threshold State
radial wave function. The Coulombian Threshold States are described in this
work in framework of the R-Matrix Theory. The formal device for description
of spatial extension of wave function, both within nucleus interior and also
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outside channel radius, is known as the Compression Factor of R-Matrix The-
ory. This is why the R-Matrix Theory appears to describe appropriatelly the
spatial distribution of these states. The R-Matrix description of Threshold
States is developed in two variants: the isolated threshold level, and threshold
level embeded in the background of statistical levels.

2. SINGLE THRESHOLD STATE

The Threshold States are related to process of escape of a particle (or
cluster) from nucleus. In limit of zero energy the nucleus is splited into two
fragments, the residual nucleus and an emitted particle. Their relative veloc-
ity is near zero; the two fragments remain close together for a while. This
configuration, called Threshold State, consists of two clusters in a definite
relative movement (orbital angular momentum). The relative movement of
the two fragments is described by a radial wave function extended spatially
outside channel radius. The overlap of this function to channel wave func-
tion becomes very large, resulting in a big reduced width for level’s decay in
threshold channel. This physical image (break-up into two fragments in a very
slow relative movement, radial wave function extended outside channel radius,
large reduced width for decay in threshold channel) is subject of the following
formal modelling.

The spatial extension of the radial wave function, outside the channel
radius a is given by (Lane A.M., 1970),

β(E) =

∫ a
0 |u(r)|2dr

∫ a
0 |u(r)|2dr + |u(a)/f(a)|2 ∫ ∞

a |f(r)|2dr
,

where u(r) is the radial wave function of the level under consideration and
f(r) = exp(ikr), its channel wave function. For a deep-lying bound state
k = i|k|, |k| – large, β(E) is unity; the spatial extension factor, β(E), reaches
its minimum value just at zero energy. For the resonant level, above threshold
E > 0, k = k1−ik2 with k1 and k2 both positive, a similar definition holds (see
e.g. Baz A.I., Zeldovich I.B. and Perelomov A.M. 1971, Ch. VII; also Schnol
E.E., 1970 and Schnol E.E., 1971). The β(E) factor is a measure of spatial
extension of the level’s wave function outside channel radius. On the other
hand its significant non-unity value is just at or near threshold. We have to
put into correspondance the threshold level with its spatial extension outside
nucleus radius. Moving a deep bound state towards threshold, its tail extends
more and more outside nucleus and this corresponds to the “explosion” of
threshold level. This single particle picture does not depend mainly on interior
of the nucleus.
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The R-Matrix Theory provides a suitable formal device for description
the spatial extension (out of nucleus radius) of the radial wave function; this
is R-Matrix “compression factor” (Lane A.M. and Thomas R.G., 1958). Ac-
cording to R- Matrix Theory, the “spatial extension factor” is identical to R-
Matrix “compression factor”.

β(E) =
1

1 + γ2
πndSn/dE

,

where Ln = Sn + iPn is logarithmic derivative of the n-threshold channel.
The real and imaginary parts of logarithmic derivative are shift-factor, Sn,
and penetration-factor, Pn. The level π reduced width for decay in threshold
channel n is γ2

πn; in a single particle limit it is proportional to wave function
value |u(a)|2 at channel radius a. A resonant level 1/(E0

π−∆π+iΓπ) is distorted
by strong energy dependance of threshold channel terms in the level-shift ∆π

and total width Γπ, namely Snγ2
πn and Pnγ2

πn. By a Taylor expansion of
threshold channel shift factor, Sn(E) = Sn(0) + E(dSn/dE)ε with energy
measured with respect to threshold (zero energy) and 0 < ε < E, one obtains
a renormalization of level’s position and width

Eπ = E0
π − Sn(0)γ2

πn → βEπ, Γπ → βΓπ.

It is proved analitically for neutrons that dSn/dE > 0 and this results
into β < 1. Far away from threshold the shift factor is nearly constant and
β = 1. For threshold region a strong energy dependance of the shift factor
and a large reduced width γ2

πn result in small values for compression factor β.
In the limit β → 0 the (single particle) levels are shifted just to threshold.

Another physical interpretation of the compression factor is its recipro-
cal β−1 is the “enhancement factor” of the probability to find the level near
threshold (Lane A.M., 1970).

There is also other alternative interpretation of the β factor (Ata M.S.
and Hategan C., 1988). A slight generalization of β factor is

β =
1

1 + γ2
πn[Sn(E) − Sn(Er)]/(E − Er)

.

This quantity for a threshold level (energy Er = Eπ − Sn(Er)γ2
πn = 0) is

just ratio between the Reduced R-Matrix Rr(b) and the R-Matrix itself where
natural boundary conditions b = Sn(Er) were used in definitions: Rr(b) =
= (R−1 − b)−1 and Sn(b) = Sn(E) − b.

β = Rr(b)R−1 = (1 − Rb)−1.

The R-Matrix contains informations only on inner part of configuration
space for the open channel system. The Reduced R-Matrix contains addi-
tional information on threshold channel and its outer channel region. The
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β factor expresses the effect of the threshold channel on the reaction sys-
tem. It enters as a “renormalization factor” of R-Matrix parameters (energy,
width). If β is unity the system does not feel the threshold channel. This
happens far away from threshold (where Sn(E) does not change much with
energy, Sn(E) ∼ Sn(Er)) or for negligeable reduced width γ2

πn ∼ 0. But it
is essentially different from unity for those resonances which interplay with
n-threshold (Sn(E)-strong energy dependent) and which have a large reduced
width for decay in threshold channel (single particle or cluster character).
These remarks result into another formal definition of threshold state π of
energy Eπ and width Γπ:

|Eπ − Ethr| < Γπ, Γπn ∼ Γπ.

Only these states (coincident with threshold and decaying preferentially
in threshold channel) have a β factor differing essentially from unity. A sig-
nificant threshold effect in cross-section of an open channel occurs onlly as
consequence of a neutron threshold state.

Concluding the cardinal role played by β factor, it deserves a matrix
generalization for the multichannel systems:

β = RSR−1 = (1 − RS)−1.

The diagonal shift-factor matrix, S, is splited into an open-channel part,
S0, and the threshold channel component ∆S, S → S0 + ∆S with only one
non-zero component Sn in ∆S. Now the matrix (R−1 − S) becomes [(R−1−
−S0) − ∆S] and

RS = R0 + r
Sn

1 − RnSn
rT ,

with r defined by r = ‖R1n, R2n, . . . , RNn, Rnn‖ both for the N open channels
and the threshold one n = N + 1. This formula is similar to the Reduced
R- Matrix one, but in addition it includes the threshold channel, too. For
the single channel case the generalized matrix β reduces to the single channel
factor β = RSR−1

0 .
The spatial extension factor β could be expressed in terms of Kapur-

Peierls Matrix too,
RKP = (R−1 − L)−1,

with L = S + iP the logarithmic derivative matrix,

RKP = (R−1
S − iP )−1.

By analogy we define

βKP = RKP (R0
KP )−1,

which for a single channel reduces to

βKP = (1 − RnLn)−1.
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The compression factor becomes complex; its modulus can be used as a
measure of spatial extension of the level wave function, outside channel radius.

One can add some remarks on Molecular Aspects of Coulombian Heavy-
Ions Threshold States. An analytical formula for calculus of Coulombian
Threshold States’ energies has been obtained; it uses analytical formulae
for logarithmic derivative in heavy fragmentation limit (Coulomb parameter,
η � 0).

dL/dE = (1/2E)[L − L2 + (2ma2)/h2(V − E) − ηdL/dη],

with V – threshold channel interaction potential, m – reduced mass and a –
channel radius. Evaluating minimum of β-factor one obtains an approximative
formula for the energy of Threshold States in limit of heavy ions fragmentation
(see Hategan C., 1983).

ETS = Bc + (h2/2ma2)[−4η − L(L + 1)/2η + L2(L + 1)2/32η3],

with Bc- coulombian/centrifugal barrier. Observe that L = 0 threshold level is
below effective threshold Bc. (According to some models for nuclear molecules
their energy is just Bc.) Also an exact numerical approach to calculus of
Coulombian Heavy-Ions Threshold States energies has been done (Duma M.,
Hategan C., and Ionescu R.A., 1993). It is based on calculus of minimum for
“Compression Factor β”. Numerical evaluations of minimum of β parameters
for different nuclear systems as Ne20,Mg24,Si28, etc. result also into conclu-
sion that the threshold’s state energy is located just below the coulombian-
centrifugal threshold (Hategan C., 1983). Both numerical and analytical ap-
proaches agree pretty well with experimental centroids of nuclear molecules
(Cindro, 1981).

In next paragraph we discuss about effect of Channel Interaction on
Threshold States. Let assume an attractive potential superposed on coulom-
bian/centrifugal barrier. Such additional channel interaction will result into
change of channel’s logarithmic derivative and, consequently, of Threshold
State’s energy. A similar situation does appear in Fission Theory (see Bjorn-
holm S., and Lynn J.E., 1980). The attractive potential, superposed on fission
barrier, does accomodate the fission vibrational states. One could approach
the problem of fission vibrational states in two formal ways: either to associate
to a class of R-Matrix states or to modify the channel logarithmic derivative.
The last method is named “extended penetration factor or logarithmic deriv-
ative”. By analogy we could suppose the existence of “vibrational states” in a
binuclear attractive potential superposed on channel coulombian/centrifugal
barrier. The Coulombian Threshold State is then splited in these vibrational
states, resulting in substructures (similar to “Intermediate Structure” phenom-
enon). The split of R-Matrix in two components results into renormalization
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of channels logarithmic derivatives (see Lane A.M., and Thomas R.G., 1958)

L = (L−1 − R)−1 = L + L/[(LR)−1 − 1].

Assuming vibrational resonances in attractive potential

Rnn = Σλγ2
λn/[Eλ − E − iWλ],

one obtains for channel logarithmic derivative

L = L + ΣλL2γ2
λn/[Eλ − E − iLγ2

λn − iWλ]

reflecting its resonant structure. One could calculate the transmission coeffi-
cients according to usual formula

Tn = 1 − |[1 − RL∗]/[1 − RL]|2 = 4PnImR/|1 − RL|2 =

= 4PnWγ2
λn/[(Eλ − Sγ2

λn − E)2 + (Pγ2
λn + W )2].

Observe that in weak-absorption limit (W – small) one obtains sharp resonant
structures both in logarithmic derivative and transmission coefficient. In the
large absorption limit these resonant structures are washed out. This aspect
should be approached in more detail.

Concluding this chapter, the Threshold State is a special quasistationary
state, coincident in energy with threshold, also having a large reduced width
(� Wigner unit) for decay in the threshold channel. The reduced width is
a measure of single particle character of the level in interior region. The
probability of finding a pair of threshold particles out of channel radius is
proportional to the threshold channel reduced width; a very large reduced
width results into level “explosion” out of channel radius. The Threshold
State is described, in first approximation, as a Single Particle State coincident
with threshold; its overlap γπn with threshold channel is very large, i.e. it has
a large escape width Γ↑

π. By residual interactions the Single Particle Resonant
State is spread out over compound nucleus actual levels (next paragraph).

3. THRESHOLD STATE IN MULTILEVEL SYSTEMS

The Coulombian Threshold States are highly excited states (∼ – Coulomb-
Centrifugal barrier); at such excitation energies there is a high density of
states, even for light-medium nuclei. The Threshold State appears as a state
embeded in a background of (statistical) levels. However it is not disolved in
the statistical levels, showing up as a discernable level superposed on statis-
tical background. This situation is similar to the case of Isobaric Analogue
Resonances. These resonances are levels with a given (good) isospin number,
superposed on background levels with different isospin. The isospin conserva-
tion is the mechanism which prevents the spreading of the Isobaric Analogue
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Resonance in the statistical levels. In the case of Threshold States, the un-
derlying mechanism which does inhibit their decay in statistical levels, is their
large extension in the threshold channel, outside its radius. Formally this is
expressed by a large overlap of the level to the channel, i.e. a large reduced
width for decay in threshold channel. As the total reduced width cannot ex-
cede the Wigner unit, this condition results into small values of reduced widths
for decay in complementary reaction channels. The out of channel radius part
of level wave function does not overlap to nucleus inner states; the last ones
are complicated multiparticle states forming the statistical background. The
spatial extension in the threshold channel of the level under consideration is
responsable also for decoupling from statistical levels, resulting in a smaller
spreading width. The states with small spreading widths, as compared to
the escape one, are called intermediate or doorway states. The doorway as-
pect of the Threshold State has to be described as a special state embeded
in the sea of statistical levels. The reaction model for descriptin of Threshold
States embeded in statistical levels is similar to external mixing model for Iso-
baric Analogue Resonances. In the external mixing model the approximative
isospin conservation is involved. In this description of Threshold States, em-
beded in statistical levels, the spatial extension of the threshold level is used
(Hategan C., 1983).

In order to describe the interplay between a special state (an Isobaric
Analogue Resonance, a Threshold State, or an usual Doorway State) and
the statistical levels one has to split the K- or R-Matrix or Kapur-Peierls
Matrix into two corresponding parts (see Lane A.M., 1969). The two parts
will be labeled, in the following, by letters π (for Threshold State) and β (for
background statistical levels µ)

RKP = Rπ + Rβ = γπ ∗ γπ/(Eπ − E) + Σµγµ ∗ γµ/(Eµ − E).

This results into decomposition of the Collision Matrix in two parts,
corresponding to Rπ and Rβ, for studying the problem of the immersion of
the single level π in the sea of statistical levels µ. One can study either the
influence of statistical levels on the threshold level, or the influence of the
threshold level on the statistical ones (Ata M.S., and Hategan C., 1988).

In this approach one assumes that the statistical background could be
described as a set of non-overlaping levels. (An exact treatment does not
involve this assumption (Hategan C., Comisel H. and Ionescu R.A., 2004).)
The only physical assumption concerns the reduced widths of the threshold
level π for decay in the open channels a and in n threshold channel, γπa � γπn.
It appears that the decay of statistical levels µ in open channels is not affected
to much by the presence of the threshold level. The statistical levels are
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decoupled from threshold channel by a factor f2 = β2 which can be named “de-
enhancement factor”. This factor is a measure of the decoupling of ordinary
statistical levels from the threshold channel.

The threshold state π has more interesting properties. If the energy-
averaged statistical backgroud is diagonal (basic assumption in Hauser-Fesh-
bach Statistical Model) then the threshold state’s coupling to open channels is
not modified. If this statistical assumption does not hold then the Threshold
State can decay in open (non-threshold) channels only by a two-step process.
This process was called Quasi-Resonant Scattering (Dorobantu V. and Hate-
gan C., 1991). The resonance’s denominator of the threshold level, immersed
in background of statistical levels, results into evaluation of the spreading
width. It is proved that the Threshold State’s spreading width is propotional
to the statistical background Strength Function of threshold channel, Γ↓

π ∼ Sβ
n .

As the background Strength Function is proportional to level density of statis-
tical levels one obtains the “Damping Width Postulate” which is common to
theories of simple structures lying at high excitation energies (Lane’s Theory
of “Line Broadening” ).

The Threshold State is highly excited state, embeded in a continuum
of statistical levels. The Threshold State has a small overlap to inner com-
pound nucleus states because of its spatial extension, out of channel radius.The
Threshold State is decoupled from statistical levels by the “de-enhancement”
factor β,resulting in a small spreading width Γ↓

π. The Micro-Giant Threshold
State is an additional example of “Line-Broadening” in Nuclear Physics. Both
the “doorway” nature of the Threshold State as well as the mechanism pre-
venting its spreading in statistical continuum originate in its very large spatial
extension (out of channel radius).

4. ON COULOMBIAN THRESHOLD STATES
AND OPTICAL POTENTIAL ANOMALY

A decrease of the real part of Optical Potential ∆V , centred at Coulom-
bian threshold, was reported in literature (see e.g. Satchler G.R., 1991); this ef-
fect was called Threshold Anomaly of the Optical Potential. At same Coulom-
bian Threshold energy, the imaginary part W of the Optical Potential sharply
decreases when energy falls below the Coulomb barrier. The Optical Potential
plays a cardinal role in calculus of fusion reactions and, consequently, in the
time-reversed reactions of fragmentation. In this chapter the Optical Potential
Threshold Anomaly is related to Coulombian Threshold States. The role of
Coulombian Threshold States in producing the Optical Potential Threshold
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Anomaly is approached in terms of Feshbach’s Projector Theory for Effec-
tive Interactions (see e.g. Kuo T.T.S., 1981); this approach is based on β
renormalization factor of Threshold State.

According to Feshbach Theory, the reaction systems is split into two parts
by the projection operators P and Q, on retained and eliminated channels,
respectively

1 = 〈Ψπ|Ψπ〉 = 〈PΨπ|PΨπ〉 + 〈QΨπ|QΨπ〉.
In terms of Effective Hamiltonian one obtains a relation connecting the

two norms, ‖PΨπ‖ and ‖QΨπ‖, of the state π with energy Eπ,

−(dEπ/dω)(ω=Eπ)〈PΨπ|PΨπ〉 = 〈QΨπ|QΨπ〉
and the norm becomes (Kuo T.T.S., 1981),

〈PΨπ|PΨπ〉 = 1/(1 − (dEπ/dωEπ) = β.

In next step one defines the hamiltonian for independent (uncoupled)
P -reaction system

(PHP )|PΨπ〉 = E0
π|PΨπ〉.

The shift of the level π due to coupling to Q-system, ∆Eπ = Eπ − E0
π,

is evaluated assuming a linear approximation, accepted in R-Matrix Theory
(Lane A.M. and Thomas R.G., 1958)

∆Eπ = Eπ − E0
π = ∆E(dEπ/dω)(ω=Eπ).

One obtaines that the additional term in effective Optical Potential,
∆U = ∆V + iW , is

〈PΨπ|∆U |PΨπ〉 = ∆E(β − 1), β = 1/(1 + γ2
πndLn/dE).

If this matrix element does not depend on specific state π (see e.g. Davydov
A.S., 1958), one obtains

∆V + iW = ∆E(β − 1)

or even (because both ∆V and W are negative)

|∆V | + i|W | = ∆E(1 − β).

(The last assumption should be correct in the Optical Model limit which in-
volves only Single Particle States). At this level of derivation, the “compression
factor” is evaluated according to R-Matrix Theory, resulting into

|∆V | + i|W | = ∆E((1 − βR) + iγ2
πndPn/dE),

βR = 1/(1 + γ2
πndSn/dE).

It results that the polarization term of the effective Optical Potential is
dependent on the real part of the β factor

|∆V | = ∆E(1 − βR),
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while the imaginary part W is proportional to the energy derivative of the
threshold channel penetration factor

|W | = ∆Eγ2
πndPn/dE.

One has to remark that the energy dependence of βR factor and of dPn/dE
do reproduce the energy dependences of the polarization |∆V | and of absorp-
tive |W | terms in Optical Potential respectively (dip/resonance and S- shape
forms). We have done calculations of βr and of energy derivative of penetra-
tion factors by assuming that the reduced width of the Coulombian Threshold
State is just Wigner unit; this assumption on reduced width is congruent with
Optical Model description of Single Particle States/Resonances. The above
approach to Optical Potential Threshold Anomaly results into conclusion, the
threshold anomaly of the Optical Potential ∆V + iW is strongly dependent
on reduced width of the threshold state γ2

πn, i.e. if the Optical Potential U
does support a genuine Single Particle Threshold State (γ2

πn attains maxi-
mum value), then the Optical Potential Threshold Anomaly is strong. If there
is no Threshold State, i.e. the reduced width vanishes, then there is not a
Threshold Anomaly in Optical Potential. This is a new physical result firstly
obtained here.

5. CONCLUSIONS

The problem of Coulombian Threshold States was formulated by Baz;
he proposed a qualitative theory based on spatial extension of wave function’s
tail outside channel radius. Moreover he extended this view assuming an
attractive potential at channel radius in order to increase the probability to
find threshold partners just at channel radius.

The present work does approach the Coulombian Threshold States in
quantitative terms of Nuclear Reactions Theory. The Threshold States are
located just at frontier between Discrete Spectrum (which is subject of Nu-
clear Spectroscopy) and Continous Spectrum (which is subject of Nuclear
Reactions). This is why both spectroscopical and reaction aspects have to be
involved in description of Threshold States. The extension of the Threshold
States, outside channel radius, is quantitatvely described in terms of Com-
pression Factor of R-Matrix Theory. The present approach does present other
three different physical interpretations of the Spatial Extension of wave func-
tion: Compression Factor, Enhancement Factor of probability to find the level
near threshold and as Ratio between Reduced R-Matrix and R-Matrix itself.
The spectroscopical aspects of the Threshold States are quantitatively given
by the reduced width for decay in threshold channel. The problem of at-
tractive potential (proposed by Baz) in the threshold channel is qualitativelly



408 D. Cutoiu, C. Hategan, R.A. Ionescu 12

approached in R-Matrix terms, similar to an approach used in Fission Theory.
This approach results into conclusion that the Threshold State is splited into
substuctures of “vibrational” nature; this peculiar aspect needs additional in-
vestigations. The one-channel Threshold States are investigated analytically
in limit of Heavy Ions fragmentation. It is proved that the Threshold States
are organized in rotational bands; in this respect the Heavy Ions Threshold
States have properties of Nuclear Molecules.

Another aspect of the Nuclear Molecule, namely the Damping Width
Postulate, is approached by extending the description of Threshold State for
multilevel-multichannel systems.The one-channel Spatial Extension Factor is
generalized to multichannel and multilevel reaction systems. The main prob-
lem is that of the spreading of the Threshold State in continuum of statis-
tical levels. The spatial extension of Threshold State outside channel radius
results into its decoupling from background of statistical levels. On proves
that the “de-enhancement factor”, i.e the decoupling from statistical levels, is
the sub-unitary Threshold Compression Factor. The Spreading Width of the
Threshold State decreases while the Escape Width is increased by β or 1/β
quantities, respectively. One proves also that in statistical limit of fluctuating
non-diagonal Collision- Matrix elements, the Threshold State is statistically
decoupled from open complementary channels.

The implication of Coulombian Threshold States in problem of Opti-
cal Potential Threshold Anomaly is also studied. It is emphasized the role
of Coulombian Threshold States in producing significant changes of the real
polarization term of the Optical Potential and also its relation to imaginary
potential.
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