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Abstract. We show that proton emission is a valuable tool to investigate mean field
properties of exotic proton rich nuclei. We give a formula that relates the logarithm of the
half-life, corrected by the centrifugal barrier, with the Somerfeld parameter in proton decay
processes. The corresponding experimental data lie on two straigth lines which appear as a
result of a sudden change in the nuclear shape, marking two regions of deformation. This fea-
ture provides a powerfull tool to assign experimentally quantum numbers and deformations
in proton emitters.
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Nowadays the challenge in nuclear physics is related to rare nuclei, i.e.
nuclei lying very far from the stability line which decay rapidly by particle
emission (neutron and proton drip lines) [1]. The exploration of the drip-lines
is one of the ambitions of the projected radioactive nuclear bean facilities as
e.g. the Rare Isotope Accelator (RIA) [2, 3].

By plotting the logarithm of the half-lives as a function of Qp, i.e. the
kinetic energy of the emitted proton, one does not obtain a clear graphical
pattern of the experimental data, as in the Geiger-Nutall rule. As seen in
Fig. 1.a [4], such a plot does not show any obvious trend. The reason of this
disorder is that not only Qp but also the height and width of the Coulomb and
centrifugal barriers, in which the proton is trapped before decaying, determine
the decay width. Or, in other words, it is the probability of penetration
through the total barrier that determines the decay. Assuming that the proton
is located at a point R, the half-life corresponding to that wave, with given
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angular momentum and total spin (l, j), can be written as [5]

T1/2 =
ln 2
v
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where H
(+)
l is the Coulomb-Hankel spherical wave, χ = 2(Z −1)e2/(�v) is the

Somerfeld parameter, which determines the Coulomb barrier, Z is the charge
number of the mother nucleus, v = �k/µ =

√
2Qp/µ is the asymptotic velocity

of the outgoing proton, µ is the reduced mass of the proton-daughter system,
ρ = kR and the spectroscopic function is given by [6]

slj(R,β) =
∑
l′j′

Klj;l′j′(R,β)s(0)
l′j′fl′j′(R,β), (2)

where s
(0)
lj is the so-called spectroscopic factor (the particle probability u2

lj

within the superfluid model) and flj are the components of the internal wave
function (the standard Nilsson function within the adiabatic approach). The
asymptotic propagator matrix is given by [6]

Klj;l′j′(R,β) ≡ H
(+)
l (χ, ρ)

[
H(+)(R,β)

]−1

lj;l′j′
= δll′δjj′ + ∆Klj;l′j′(R,β). (3)

Here H(+)
lj;l′j′(R,β) is the matrix of solutions with an outgoing boundary be-

havior, i.e. H(+)
lj;l′j′(R,β) →R→∞ δll′δjj′H

(+)
l (χ, ρ). It is fully determined by

the concrete form of the interaction. Thus, the relation (1) has the same form
as in the spherical case, but for deformed systems the spectroscopic function
is a superposition of the different channel components flj. Our coupled chan-
nels calculations showed that, even for the most deformed emitter 131Eu with
β = 0.33, the nondiagonal contribution is relative small, i.e. max(∆K) < 0.1,
for distances at which the nuclear part of the interaction has vanishing values.

The ratio H
(+)
l /slj, entering Eq. (1) (which is just the inverse of the

scattering amplitude in the (l, j) channel) does not depend upon the radius and
this is an important test of accuracy in any coupled channels scheme. A good
approximation of the Coulomb-Hankel function H

(+)
l for energies involved in

proton emission is given by the WKB value, i.e. [5]

H
(+)
l (χ, ρ) ≈ Cl(χ, ρ)(ctg α)1/2 exp[χ(α − sin α cos α)]. (4)

The influence of the centrifugal barrier is fully contained in the function Cl

Cl(χ, ρ) = exp
[
l(l + 1)

χ
tg α

]
, cos2 α =

Qp

Vc(R)
=

ρ

χ
, (5)

where Vc(R) is the Coulomb potential at distance R. We will choose this
distance as the matching radius, for which we will adopt the standard form, i.e.
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Fig. 1 – a) Logarithm of the experimental half-lives corresponding to pro-
ton decay as a function of the Q-value. The data are taken from Ref. [4];
b) values of log10 Tred, Eq. (6), as a function of the Coulomb parameter
χ, The numbers labelling the different symbols correspond to the l-values
of the outgoing proton. The two lines are computed according to Eq. (8).

R = 1.2(A1/3
d + A

1/3
p ), where Ad is the mass number of the daughter nucleus

and Ap = 1. The dependence of the centrifugal factor upon the distance,
entering through α, is very weak around that value of R. Defining a reduced
half-life as

Tred =
T1/2

C2
l

=
F (χ, ρ)

|slj(R,β)|2 , (6)

where

F (χ, ρ) =
ln 2
v

ctg α exp[2χ(α − sin α cos α)], (7)

one sees that Tred should not depend upon the angular momentum l if plotted
against the dimensionless Coulomb parameter χ. Moreover, log10 Tred which,
according to Eq. (7), is proportional to 2χ(α− sin α cos α), is a linear function
of χ independently of the value of l, provided the velocity v, the function slj

and the parameter α, which depend upon the Q-value, has a smooth behaviour
in this logarithmic scale. Notice that the value of Tred is model independent
since the only theoretical quantity entering in its definition is the function C2

l ,
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which is a by-product of the barrier penetration process. But it is important to
stress that this entire analysis is based upon the assumption that the proper
value of l, that is the one that determines the experimental half-life T1/2,
is used. Otherwise, and since T1/2 is strongly l-dependent, that straight line
pattern would be completely spoiled.

To check the rather straightforward conclusions reached above we eval-
uated log10 Tred in cases where experimental data are available, as shown in
Table 1 of the reference [7]. We considered proton emitters with Z > 50 and
angular momentum as given in Ref. [4]. The value of the proton angular
momentum l outside the nucleus is extracted from theoretical predictions.
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Fig. 2 – a) Dependence of the quadrupole deformation parameter β upon
the charge number Z. Dark circles correspond to nuclei with Z < 68.
Notice that β is the same in this scale for the isotopes Cs and also for
the two states in Ho; b) the logarithm of the spectroscopic function s−2

lj ,

defined by Eq. (1), versus the charge number Z.

With the values of l, χ and log10 Tred of we produced the plot shown
in Fig. 1.b. Amazingly enough, the points lie all approximately along two
straight lines. The nuclei on the upper line correspond to the emittrs with
Z < 68. Using a fitting procedure we found that the experimental half-lives
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can be reproduced by the formula

log10 T
(k)
red = ak(χ − 20) + bk,

a1 = 1.31, b1 = −2.44, Z < 68
a2 = 1.25, b2 = −4.71, Z > 68, (8)

where k = 1 corresponds to the upper line in Fig. 1.b. The standard errors
are σ1 = 0.26 and σ2 = 0.23, corresponding to a mean factor less than two.

These two straight lines may have been induced either by a brusque
change in the Q-values or in the structure of the different emitters, or by both.
The Q-value dependence affects only the function F (χ, ρ), but our analysis
showed that the two lines cannot be explained in this way. This forces us to
conclude that although there is a change in the Q-values at Z = 65 (which
can also be seen by plotting the dependence of ρ versus Z), this effect can
not be the only reason behind the two straight lines of Fig. 1.b. The only
other source that may contribute to that alignment is an abrupt change in
the nuclear structure of the emitters. We therefore correlated the deformation
values calculated in Ref. [8] with the determined half-lives.

In Fig. 2.a we show the deformation parameter β as a function of Z. At
the proton drip line between Z = 67 and Z = 69 occurs a pronounced change,
from a large prolate shape with β ≈ 0.3 to an oblate shape with β ≈ −0.2.
These shapes are substantiated by measurements of moments of inertia. In
order to analyse the dependence of the half-life upon the internal structure of
the nucleus we plot in Fig. 2.b the quantity s−2

lj as a function of the charge
number Z. It is worthwhile to emphasize once again that this is a model
independent function.

One remarks a striking correlation between Figs. 2.a and 2.b. After the
jump occurrying at Z = 68, where a brusque shape change occurs, the de-
formation of the nuclei lying on the lower line smoothly increases. One can
then assert that these lines reflect two regions of nuclei separated by a sharp
transition between the prolate and oblate regimes.

Moreover, if one represents the dependence of s−2
lj versus β one obtains

the distribution in Fig. 3, which is clearly clustered around the two dashed
lines. In one uses this linear dependence for s−2

lj as a function of β to estimate
the half-lives one obtains exactly the two lines in Fig. 1.b.

There is a point in Fig. 1.b that deviates conspicuosly from the upper
straight line. That is the solid square corresponding to 141Ho∗. In Fig. 2 a
one sees that this nucleus is situated at the border between the two regions
of deformation, which is consistent with the interpretation given here to the
behaviour of log10 Tred since the decay proceeds in this case from an excited
state. Therefore not only the deformation but also nuclear structure effects,
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Fig. 3 – The logarithm of the spectroscopic function s−2
lj , defined by

Eq. (1), versus the quadrupole deformation parameter β.

absent in the adjacent nuclei, become important, as can be seen by comparing
Figs. 2.a with 2.b.

The remarkable agreement between the data and the straight lines be-
haviour shown in Fig. 1.b can hardly be considered accidental. Will all nuclei
lie on these two lines or will another region in the nuclear chart occur, with
yet another line ? These are important questions to answer and we encour-
age further experimental efforts directed to the measurement of half-lives and
Q-values in proton decays.

In conclusion we have shown in this paper that the proton half-lives are
strongly correlated with the nuclear shapes. The simple formula for proton
decay (Eq. (8)) is the equivalent of the Geiger-Nutall rule. This formula allows
one to assign presicely the spin and parity of proton decaying states. The only
quantities that are needed are the half-life of the mother nucleus and the
proton Q-value. As a function of these quantities, corrected by the centrifugal
barrier (Eq. (6)), the experimental data lie along two straight lines. Since the
decay probability is strongly dependent upon the orbital angular momentum
l of the decaying proton, only properly assigned l-values will fit into those
straight lines. Moreover, these two lines appear as a result of a sudden change



7 Probing nuclear mean field by proton emission 417

in the nuclear shape marking two regions of deformation. This can, therefore,
be a powerful tool to determine experimentally quantum numbers as well as
deformations in rare nuclei.
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