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Abstract. We give a brief overview of recent results in the area of two- and three-
dimensional solitons and vortices in nonlocal nonlinear optical media.
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Multidimensional (two- and three-dimensional) solitons, have attracted a
great deal of attention in optics, see [1–4]. Of much importance are the three-
dimensional spatiotemporal solitons, often refered to as “light bullets” [5].
These are multidimensional pulses, which maintain their shape in the longitu-
dinal (temporal) and transverse (spatial) directions due to the balance between
the group-velocity dispersion, diffraction, and nonlinear self-phase modulation.
However, solitons in media with the cubic self-focusing nonlinearity, obeying
the nonlinear Schrödinger (NLS) equation, are unstable in two and three di-
mensions, because of the occurrence of collapse in the same model [6]. Several
possibilities to arrest the collapse were considered, such as periodic alterna-
tion of self-focusing and defocusing layers [7] and various generalizations of
this setting [8], and the use of weaker instabilities, viz., saturable [9] or qua-
dratic (χ(2)) ones [10–13]. Tandem layered structures, composed of alternating
linear and quadratic (χ(2)) layers, were also proposed and investigated [14].
The only successful experiment in this field was the creation of quasi-(2+1)-
dimensional spatiotemporal solitons in bulk χ(2) samples [4, 15]. Other the-
oretically developed approaches use off-resonance two-level systems [16] and
self-induced-transparency media [17].
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Collapse does not occur either in χ(3) media whose nonlinearity is non-
local [18], therefore they may also give rise to stable solitons, see review [19].
Two-dimensional spatial solitons stabilized by the nonlocality were observed
in vapors [20] and lead glasses featuring strong thermal nonlinearity [21]; in
the latter case, elliptic and vortex-ring solitons were reported. Optical one-
dimensional solitons supported by a nonlocal χ(3) nonlinearity were also cre-
ated in liquid crystals [22]. Further, photonic lattices [23], vortices [24], spa-
tial solitons in soft matter [25], multipole vector solitons in nonlocal nonlinear
media [26], one-dimensional solitons of even and odd parities supported by
competing nonlocal nonlinearities [27] were considered in the context of non-
locality. In addition, it was shown that long-range cubic nonlinearity induced
by long-range interactions between atoms carrying polarized magnetic mo-
menta in effectively two-dimensional Bose-Einstein condensates also leads to
the prediction of stable two-dimensional (2D) solitons [28].

Two-dimensional vortex solitons [24] and three-dimensional (3D) fun-
damental (nonspinning) and spinning (with nonzero vorticity) [29] were con-
sidered in the context of nonlocality. It has been demonstrated that one-
parameter families of stable (3+1)-dimensional spatiotemporal solitons are
possible in media with nonlocal χ(3) nonlinearity [29]. However, the spinning
solitons are unstable in the specific nonlocal model, see below, which is valid,
e.g., for the case of thermal nonlinearities.

Next we consider in detail a 3D nonlocal model based on a general system
of coupled equations for the complex field amplitude q and nonlinear correction
to the refractive index n (see, e.g., [30]); in a normalized form, the equations are

iqξ + (1/2)(qηη + qζζ + Dqττ ) + qn = 0, (1)

d(nηη + nζζ) − n + |q|2 = 0. (2)

Here, η, ζ and ξ are the transverse and longitudinal coordinates, scaled, re-
spectively, to the beam’s width and its diffraction length, τ is the reduced
temporal variable, and D is the ratio of the diffraction and dispersion lengths.
We consider the case of anomalous temporal dispersion, D > 0 (otherwise,
there is no chance for the self-trapping in the longitudinal direction), and then
set D = 1 by means of an obvious scaling.

Lastly,
√

d determines the correlation length (nonlocality scale) of the
medium’s nonlinear response [note that by setting d = 0 one turns Eqs. (2)
into the ordinary 3D NLS equation with self-focusing. In fact, after setting
D = 1, additional rescaling of Eqs. (2) makes it possible to set d = 1, so as to
cast the system into the parameter-free form. Nevertheless, we prefer to keep d
as an explicit parameter, as it directly controls the system’s nonlocality degree.

The nonlocal nonlinearity in Eqs. (2) is typical for the light propagation
in nematic liquid crystals, as well as for thermal nonlinearity in optical media
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[19,22]. For the derivation of the model, the usual approximation of the slowly
varying amplitude is adopted, along with an assumption of fast relaxation of
the refractive-index perturbations in time, therefore the second equation does
not contain the term nττ . Equations (2) conserve the energy E (the norm of
the multidimensional soliton) and the Hamiltonian H,

E =
∫ ∫ ∫

|q(η, ζ, τ)|2 dηdζdτ, (3)

H =
1
2

∫ ∫ ∫ (
|qη|2 +

∣∣q2
ζ

∣∣ + D
∣∣q2

τ

∣∣ − n|q|2
)

dηdζdτ. (4)

Note that the conservation of H is easily demonstrated by the substitu-
tion the first equation of (2) of the formal inversion of the second equation,

n =
[
1 − d

(
∂2

η + ∂2
ζ

)]−1 (|q|2) . (5)

The same substitution helps to prove the conservation of the usually
defined momentum in the transverse plane, and angular momentum along the
longitudinal direction,

Pη,ζ ≡ i

∫ ∫ ∫
qq∗η,ζdηdζdτ, (6)

and
Mξ ≡ i

∫ ∫ ∫
q
(
ζq∗η − ηq∗ζ

)
dηdζdτ. (7)

Stationary solutions to Eqs. (2) are looked for as

q = w(r, τ) exp[i(bξ + Sθ)], n = n(r, τ), (8)

where r and θ are the polar coordinates in the (η, ζ) plane, b is the propagation
constant, the integer S is the vorticity (“spin”), and the real functions w and
n obey the equations(

wrr + r−1wr + wττ

) − (
2b + r−2S2

)
w + 2wn = 0, (9)

d
(
nrr + r−1nr

) − n + w2 = 0. (10)

Note that for this solution, the angular momentum is proportional to the
energy: Mξ = SE. We have numerically found families of localized solutions
to these equations, dealing with the corresponding two-point boundary-value
problem by dint of the standard band-matrix algorithm. Typically, grids with
241 × 240 and 201 × 360 points were used for the computations of the fun-
damental (S = 0) and spinning solitons, respectively. A noteworthy feature
is that the 3D solitons exist only above a finite energy threshold. We have
put into evidence the stabilizing effect of the nonlocality for the fundamental
solitons (S = 0 solitons): except for a narrow interval of small wavenum-
bers, 0 < b < bcr, the solitons are expected to be stable, as they satisfy the
Vakhitov-Kolokolov criterion, dE/db > 0, which is a necessary (but, generally,
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not sufficient) stability condition for the soliton family [6, 31] (note that the
instability of the 3D solitons in the local NLS equation precisely follows this
criterion). Full stability of solitons was investigated using the equations for
small perturbations linearized around the stationary solution.

Accordingly, solutions including perturbations with an infinitesimal am-
plitude ε are looked for as

q = eibξ+iSθ
{

w(r, τ) + ε
[
f(r, τ)eδξ+iJθ + g∗(r, τ)eδ∗ξ−iJθ

]}
, (11)

n = n(r, τ) + ε
[
p(r, τ)eδξ+iJθ + p∗(r, τ)eδ∗ξ−iJθ

]
, (12)

where J is an arbitrary integer azimuthal index of the perturbation, δ is the
instability growth rate, the asterisk stands for the complex conjugation, and
the eigenfunctions f , g and p obey the equations

2iδf + frr + r−1fr + fττ − [
2b + (S + J)2r−2

]
f + 2 (nf + wp) = 0, (13)

−2iδg + grr + r−1gr + gττ − [
2b + (S − J)2r−2

]
g + 2 (ng + wp) = 0, (14)

d(prr + r−1pr) − (1 + dJ2r−2)p + w(f + g) = 0. (15)

The growth rate δ was found as an eigenvalue at which Eqs. (14) has a
nonsingular localized solution. Stable solitons are those for which Re(δ) = 0
for all (integer) values of J . We have found that for the 3D spinning solitons,
the perturbations with J > 1 destabilize a part of the families, but entire
families of solitons with S ≥ 1 are unstable against the perturbations with
J = 1. The latter instability mode implies a trend to splitting of the vortex
soliton into a set of two fundamental ones [4], which is corroborated by direct
simulations below. Stable 3D spinning optical solitons (with S = 1) were only
found in media with competing self-focusing and defocusing nonlinearities,
viz., χ(3) : χ(5) or χ(2) : χ(3) [32]. Note that for dissipative (non-Hamiltonian)
systems governed by the complex cubic-quintic Ginzburg-Landau equation,
stable two-dimensional and three-dimensional dissipative solitons with topo-
logical charges S = 1 and S = 2 were found, too [33, 34]. Recently, stable
2D spatial (rather than spatiotemporal) vortex rings were experimentally ob-
served in a medium featuring the thermal nonlocal nonlinearity [21].

The predictions of the linear stability analysis were checked in direct sim-
ulations of Eqs. (2), which were run by means of a standard Crank-Nicholson
scheme. The nonlinear finite-difference equations were solved using the Picard
iteration method, and the resulting linear system was handled with the help of
the Gauss-Seidel iterative procedure. To achieve good convergence, we needed
typically, twelve Picard’s and four Gauss-Seidel iterations. The initial condi-
tion for perturbed solitons were taken as the form q(ξ = 0) = w(η, ζ, τ)(1+ερ),
and n(ξ = 0) = n(η, ζ, τ)(1 + ερ), where ε is, as above, a small perturbation
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amplitude, and ρ was either as a random variable uniformly distributed in the
interval [−0.5, 0.5], or simply as ρ = 1 (uniform perturbation).

First, we have checked that all the fundamental spatiotemporal solitons
which were predicted above to be stable are indeed stable against random
perturbations; Fig. 1 displays an example of self-healing of a stable soliton
with the initial perturbation amplitude ε = 0.1. A small uniform perturbation
(ρ = 1) applied to a stable soliton excites its persistent oscillations, which
suggests the existence of a stable intrinsic mode in the soliton. On the other
hand, direct simulations show that those fundamental solitons which were
predicted to be unstable decay into radiation, if slightly perturbed.

Fig. 1 – Isosurface plots illustrating the stability of a fundamental soliton
corresponding to d = 10, b = 1, and E = 178. (a) and (c): the initially
perturbed soliton, at ξ = 0; (b) and (d): the self-cleaned one at ξ = 360.

Fig. 2 – Self-trapping of a fundamental soliton, for d = 1: (a) and (c) –
the initial Gaussian pulse with energy E0 = 54; (c) and (d) – the soliton

at ξ = 60.

For the linearly unstable nonspinning solitons we have identified two
different instability scenarios: they either spread out under uniform per-
turbations that reduce their norm (energy), or they collapse if the soliton
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is perturbed by a relatively strong uniform perturbation with the strength
ε = 0.05, that increases their energy. We also simulated self-trapping of a
stable fundamental soliton from an initial spatiotemporal pulse of an arbi-
trary form. An example is shown in Fig. 2 for an isotropic Gaussian input,
w(ξ = 0) = W0e

−(η2+ζ2+τ2)/ρ2
1 , n(ξ = 0) = N0e

−(η2+ζ2+τ2)/ρ2
2 , which generates

an anisotropic (elliptic) soliton.
We also simulated the evolution of unstable spinning solitons. Most

typically, they follow the prediction of the linear stability analysis and split
into two stable fundamental solitons, see an example (for S = 1) in Fig. 3.

Fig. 3 – Splitting of an unstable S = 1 soliton with d = 100 and b = 0.05.
(a) and (d) ξ = 0, (b) and (e) ξ = 1400, and (c) and (f) ξ = 1600.

In conclusion, we have demonstrated that nonlocal cubic nonlinearity is
sufficient to stabilize 3D fundamental (nonspinning) solitons, which suggests
a new approach to making of 3D spatiotemporal solitons in optics, which thus
far evaded experimental observation. The stability of the fundamental soli-
tons was demonstrated through the computation of the corresponding stability
eigenvalues, and in direct simulations. Their robustness and, hence, physical
relevance was demonstrated by self-trapping from arbitrary input pulses. On
the other hand, all the spinning 3D solitons in the nonlocal medium with ther-
mal nonlinearity are unstable against splitting into a set of stable fundamental
solitons.
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