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Abstract. The Gamow-Teller transition operator is written as a polynomial in the
dipole proton-neutron and quadrupole charge conserving QRPA boson operators, using the
prescription of the boson expansion technique. Then, the 2νββ process ending on the first 2+

state in the daughter nucleus is allowed through one, two and three boson states describing
the odd-odd intermediate nucleus. The approach uses a single particle basis which is obtained
by projecting out the good angular momentum from an orthogonal set of deformed functions.
The basis for mother and daughter nuclei have different deformations. The GT transition
amplitude as well as the half lives were calculated for six transitions. Results are compared
with the available data as well as with some predictions obtained with other methods.
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One of the most exciting subject of nuclear physics is that of double
beta decay. The interest is generated by the fact that in order to describe
quantitatively the decay rate one has to treat consistently the neutrino prop-
erties as well as the nuclear structure features. The process may take place
in two distinct ways: a) by a 2νββ where decay the initial nuclear system,
the mother nucleus, is transformed in the final stable nuclear system, usually
called the daughter nucleus, two electrons and two anti-neutrinos; b) by the
0νββ process where the final state does not involve any neutrino. The latter
decay mode is especially interesting since one hopes that its discovery might
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provide a definite answer to the question whether the neutrino is a Majorana
or a Dirac particle. The contributions over several decades have been reviewed
by many authors. [1, 2, 3, 4, 5, 6].

Although none of the double beta emitters is a spherical nucleus most
formalisms use a single particle spherical basis.

In the middle of 90’s we treated the 2νββ process in a pnQRPA formalism
using a projected spherical single particle basis which resulted in having a
unified description of the process for spherical and deformed nuclei [7, 8].
Recently the single particle basis [9, 10] has been improved by accounting
for the volume conservation while the mean field is deformed [11, 12]. The
improved basis has been used for describing quantitatively the double beta
decay rates as well as the corresponding half lives [13, 14]. The results were
compared with the available data as well as with the predictions of other
formalisms. The manners in which the physical observable is influenced by the
nuclear deformations of mother and daughter nuclei are in detail commented.
Two features of the deformed basis are essential: a) the single particle energy
levels do not exhibit any gap; b) the pairing properties of the deformed system
are different from those of spherical system. These two aspects of the deformed
nuclei affect the overlap matrix of the pnQRPA states of mother and daughter
nuclei. Moreover, considering the Gamow-Teller (GT) transition operator in
the single particle-space generated by the deformed mean-field, one obtains an
inherent renormalization with respect to the one acting in a spherical basis.

In Ref. [15] we studied the higher pnQRPA effects on the GT transi-
tion amplitude, by means of the boson expansion technique for a spherical
single particle basis. Considering higher order boson expansion terms in the
transition operator, significant corrections to the GT transition amplitude are
obtained especially when the strength of the two body particle-particle (pp)
interaction approaches its critical value where the lowest dipole energy is van-
ishing. As we showed in the quoted reference, there are transitions which are
forbidden at the pnQRPA level but allowed once the higher pnQRPA correc-
tions are included. An example of this type is the 2νββ decay leaving the
daughter nucleus in a collective excited state 2+. The electrons resulting in
this process can be distinguished from the ones associated to the ground to
ground transition by measuring, in coincidence, the gamma rays due to the
transition 2+ → 0+ in the daughter nucleus [16].

The aim of this work is to study the double beta decay 0+ → 2+ where
0+ is the ground state of the emitter while 2+ is a single quadrupole phonon
state describing the daughter nucleus. The adopted procedure is the boson ex-
pansion method as formulated in our previous paper [15] but using a projected
spherical single particle basis.
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In order to fix the necessary notations and to be self-contained, in the
present work we describe briefly the main ideas underlying the construction of
the projected single particle basis. The single particle mean field is determined
by a particle-core Hamiltonian:

H̃ = Hsm + Hcore − Mω2
0r

2
∑

λ=0,2

∑
−λ≤µ≤λ

α∗
λµYλµ , (1)

where Hsm denotes the spherical shell model Hamiltonian while Hcore is a har-
monic quadrupole boson (b+

µ ) Hamiltonian associated to a phenomenological
core. The interaction of the two subsystems is accounted for by the third term
of the above equation, written in terms of the shape coordinates α00, α2µ. The
quadrupole shape coordinates and the corresponding momenta are related to
the quadrupole boson operators by the canonical transformation:

α2µ =
1

k
√

2
(b†2µ + (−)µb2,−µ), π2µ =

ik√
2
((−)µb†2,−µ − b2µ), (2)

where k is an arbitrary C number. The monopole shape coordinate is deter-
mined from the volume conservation condition. In the quantized form, the
result is:

α00 =
1

2k2
√

π

[
5 +

∑
µ

(2b†µbµ + (b†µb†−µ + b−µbµ)(−)µ)

]
. (3)

Averaging H̃ on the eigenstates of Hsm, hereafter denoted by |nljm〉, one
obtains a deformed boson Hamiltonian whose ground state is, in the harmonic
limit, described by a coherent state

Ψg = exp[d(b+
20 − b20)]|0〉b, (4)

with |0〉b standing for the vacuum state of the boson operators and d a real
parameter which simulates the nuclear deformation. On the other hand, the
average of H̃ on Ψg is similar to the Nilsson Hamiltonian [17]. Due to these
properties, it is expected that the best trial functions to generate a spherical
basis are:

Ψpc
nlj = |nljm〉Ψg. (5)

The projected states are obtained by acting on these deformed states with the
projection operator

P I
MK =

2I + 1
8π2

∫
DI

MK
∗
(Ω)R̂(Ω)dΩ. (6)

The subset of projected states:

ΦIM
nlj (d) = N I

nljP
I
MI [|nljI〉Ψg] ≡ N I

nljΨ
IM
nlj (d), (7)

are orthogonal with the normalization factor denoted by N I
nlj.
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Although the projected states are associated to the particle-core system,
they can be used as a single particle basis. Indeed, when a matrix element
of a particle like operator is calculated, the integration on the core collective
coordinates is performed first, which results in obtaining a final factorized
expression: one factor carries the dependence on deformation and one is a
spherical shell model matrix element.

The single particle energies are approximated by the average of the
particle-core Hamiltonian H ′ = H̃ − Hcore on the projected spherical states
defined by Eq. (7):

εI
nlj = 〈ΦIM

nlj (d)|H ′|ΦIM
nlj (d)〉. (8)

The off-diagonal matrix elements of H ′ is ignored at this level. Their contri-
bution is however considered when the residual interaction is studied.

As shown in Ref. [9], the dependence of the new single particle energies on
deformation is similar to that shown by the Nilsson model [17]. The quantum
numbers in the two schemes are however different. Indeed, here we generate
from each j a multiplet of (2j+1) states distinguished by the quantum number
I, which plays the role of the Nilsson quantum number Ω and runs from 1/2
to j and moreover the energies corresponding to the quantum numbers K and
−K are equal to each other. On the other hand, for a given I there are 2I +1
degenerate sub-states while the Nilsson states are only double degenerate. As
explained in Ref. [9], the redundancy problem can be solved by changing the
normalization of the model functions:

〈ΦIM
α |ΦIM

α 〉 = 1 =⇒
∑
M

〈ΦIM
α |ΦIM

α 〉 = 2. (9)

Due to this weighting factor the particle density function is providing the
consistency result that the number of particles which can be distributed on
the (2I + 1) sub-states is at most 2, which agrees with the Nilsson model.
Here α stands for the set of shell model quantum numbers nlj. Due to this
normalization, the states ΦIM

α used to calculate the matrix elements of a given
operator should be multiplied with the weighting factor

√
2/(2I + 1).

Finally, we recall a fundamental result, obtained in Ref. [12], concerning
the product of two projected states, which comprises a product of two core
components. Therein we have proved that the matrix elements of a two body
interaction corresponding to the present scheme are very close to the matrix
elements corresponding to spherical states projected from a deformed state
consisting of two spherical single particle states times a single collective core
wave function. The small discrepancies of the two types of matrix elements
could be washed out by using slightly different strengths for the two body
interaction in the two methods.
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As we already stated, in the present work we are interested to describe
the Gamow-Teller two neutrino double beta decay of an even-even deformed
nucleus. In our treatment the Fermi transitions, contributing about 20% to
the total rate, and the “forbidden” transitions are ignored, which is a reason-
able approximation for the two neutrino double beta decay in medium and
heavy nuclei. The 2νββ process is conceived as two successive single β− vir-
tual transitions. The first transition connects the ground state of the mother
nucleus to a magnetic dipole state 1+ of the intermediate odd-odd nucleus
which subsequently decays to the first state 2+ of the daughter nucleus. The
second leg of the transition is forbidden within the pnQRPA approach but
non-vanishing within a higher pnQRPA approach [15]. The states, involved in
the 2νββ process are described by the following many body Hamiltonian:

H =
∑ 2

2I + 1
(εταI − λτα)c†ταIM cταIM −

∑ Gτ

4
P †

ταIPταI′

+ 2χ
∑

β−
µ (pn)β+

−µ(p′n′)(−)µ − 2χ1

∑
P−

1µ(pn)P+
1,−µ(p′n′)(−)µ (10)

−
∑

τ,τ ′=p,n

Xτ,τ ′QτQ
†
τ ′ .

The operator c†ταIM (cταIM ) creates (annihilates) a particle of type τ(= p, n)
in the state ΦIM

α , when acting on the vacuum state |0〉. In order to simplify
the notations, hereafter the set of quantum numbers α(= nlj) will be omitted.
The two body interaction consists of three terms, the pairing, the dipole-dipole
particle hole (ph) and the particle-particle (pp) interactions. The correspond-
ing strengths are denoted by Gτ , χ, χ1, respectively. All of them are separable
interactions, with the factors defined by the following expressions:

P †
τI =

∑
M

2
2I + 1

c†τIMc†
τ̃ IM

,

β−
µ (pn) =

∑
M,M ′

√
2

Î
〈pIM |σµ|nI ′M ′〉

√
2

Î ′
c†pIMcnI′M ′ ,

(11)

P−
1µ(pn) =

∑
M,M ′

√
2

Î
〈pIM |σµ|nI ′M ′〉

√
2

Î ′
c†pIMc†

ñI′M ′ ,

Q
(τ)
2µ =

∑
i,k

q
(τ)
ik

(
c†i ck

)
2µ

, q
(τ)
ik =

√
2

2Ik + 1
〈Ii‖r2Y2‖Ik〉.

The remaining operators from Eq. (10) can be obtained from the above oper-
ators, by hermitian conjugation.
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The one body term and the pairing interaction terms are treated first
through the standard BCS formalism and consequently replaced by the quasi-
particle one body term

∑
τIM Eτa

†
τIMaτIM . In terms of quasiparticle creation

(a†τIM ) and annihilation (aτIM ) operators, related to the particle operators
by means of the Bogoliubov-Valatin transformation, the two body interaction
terms, involved in the model Hamiltonian, can be expressed just by replacing
the operators (3.2) by their quasiparticle images. Thus, the Hamiltonian terms
describing the quasiparticle correlations become a quadratic expression in the
dipole and quadrupole two quasiparticles and quasiparticle density operators:

A†
1µ(pn) =

∑
mp,mn

C
Ip In 1
mp mn µa†pIpmp

a†nInmn
,

B†
1µ(pn) =

∑
mp,mn

C
Ip In 1
mp −mn µa†pIpmp

anInmn(−)In−mn ,

(12)

A†
2µ(ττ ′) =

∑
mτ ,mτ ′

C
Iτ Iτ ′ 1
mτ mτ ′ µa†τIτmτ

a†τ ′Iτ ′mτ ′
,

B†
2µ(ττ ′) =

∑
mτ ,mτ ′

C
Iτ Iτ ′ 2
mτ −mτ ′ µa†τIτmτ

aτ ′Iτ ′mτ ′ (−)Iτ ′−mτ ′ , τ, τ ′ = p, n.

Since the pnQRPA treatment of the dipole-dipole interaction in the
particle-hole (ph) and pp channels run in an identical way as in our previ-
ous publications [13, 14], here we do not give any detail about building the
dipole proton-neutron phonon operator:

Γ†
1µ =

∑
k

[X1(k)A†
1µ(k) − Y1(k)A1,−µ(k)(−)1−µ]. (13)

We just mention that the amplitude are determined by the pnQRPA equations
and the normalization condition.

The charge conserving QRPA bosons

Γ†
2µ =

∑
k

[X2(k)A†
2µ(k) − Y1(k)A2,−µ(k)(−)µ], k = (p, p′), (n, n′), (14)

are determined by the QRPA equations associated to the matrices:

Aττ ′(ik; i′k′) = δττ ′δii′δkk′(Eτ
i + Eτ

k ) − Xττ ′
(
q
(τ)
ik ξ

(τ)
ik

) (
q
(τ)
i′k′ξ

(τ)
i′k′

)
, (15)

Bττ ′(ik; i′k′) = −Xττ ′
(
q
(τ)
ik ξ

(τ)
ik

) (
q
(τ)
i′k′ξ

(τ)
i′k′

)
, i ≤ k, i′ ≤ k′,

where

ξ
(τ)
ik =

(U τ
i V τ

k + U τ
k V τ

i )√
1 + δi,k

. (16)
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In order to distinguish between the phonon operators acting in the RPA space
associated to the mother and daughter nuclei respectively, one needs an ad-
ditional index. Also, an index labeling the solutions of the RPA equations is
necessary. Thus, the two kinds of bosons will be denoted by:

Γ†
1µ(jk), j = i, f ; k = 1, 2, . . . , N (1)

s ;

Γ†
2µ(jk), j = i, f ; k = 1, 2, . . . , N (2)

s .
(17)

Acting with Γ†
1µ(ik) and Γ†

1µ(fk) on the vacuum states |0〉i and |0〉f respec-
tively, one obtains two sets of non-orthogonal states describing the interme-
diate odd-odd nucleus. By contrast, the states Γ†

2(ik)|0〉i and Γ†
2(fk)|0〉f de-

scribe different nuclei, namely the initial and final ones participating in the
process of 2νββ decay. The mentioned indices are however omitted whenever
their presence is not necessary.

Within the boson expansion formalism the transition GT operators are
written as polynomial expansion in terms of the QRPA boson operators with
the expansion coefficients determined such that the mutual commutation rela-
tions of the constituent operators A†

1µ(pn), A1µ(pn), B†
1µ(pn), B1µ(pn) be pre-

served in each order of approximation [18]. One arrives at the expressions:

A†
1µ(jpjn) =

∑
k1

{
A(1,0)

k1
(jpjn)Γ†

1µ(k1) + A(0,1)
k1

(jpjn)Γ1−µ(k1)(−)1−µ
}

+
∑

k1,k2,k3;l=0,2

{
A(3,0);l

K3k2k1
(jpjn)

[(
Γ†

2(k3)Γ
†
2(k2)

)
l
Γ†

1(k1)
]
1µ

+ A(0,3);l
K3k2k1

(jpjn) [(Γ2(k3)Γ2(k2))l Γ1(k1)]1µ

}
+

∑
k1,k2,k3;l=0,2

{
A1;(22̄)l

K1k2k3
(jpjn)

[
Γ†

1(k1)
(
Γ†

2(k2)Γ2(k3)
)

l

]
1µ

(18)

+ A(22̄)l;1
K3k2k1

(jpjn)
[(

Γ†
2(k3)Γ2(k2)

)
l
Γ1(k1)

]
1µ

}
,

B†
1µ(jpjn) =

∑
k1k2

{
B(2,0)

k1k2
(jpjn)

[
Γ†

1(k1)Γ
†
2(k2)

]
lµ
+B(0,2)

k1k2
(jpjn)[Γ1(k1)Γ2(k2)]lµ

+ B11;12
k1k2

(jpjn)
[
Γ†

1(k1)Γ2(k2)
]
lµ

+ B11;2l
k1k2

(jpjn)
[
Γ†

1(k2)Γ1(k1)
]
lµ

}
,

where the expansion coefficients are those given in Ref. [15]. If the energy
carried by leptons in the intermediate state is approximated by the sum of the
rest energy of the emitted electron and half the Q-value of the double beta
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decay process

∆E = mec
2 +

1
2
Q

(0→2)
ββ , (19)

the reciprocal value of the 2νββ half life can be factorized as:

T 2ν
1/2(0

+
i → 2+

f )−1 = F2|M (02)
GT |2, (20)

where F2 is the Fermi integral which characterizes the phase space of the
process while the second factor is the GT transition amplitude which, in the
second order of perturbation theory, has the expression:

M
(02)
GT =

√
3
∑
k,m

i〈0‖β+‖k,m〉i i〈k,m|k′,m′〉f f 〈k′,m′‖β+‖2+
1 〉f

(Ek,m + ∆E2)3
. (21)

Here ∆E2 = ∆E+E1+, with E1+ standing for the experimental energy for the
first state 1+. The intermediate states |k,m〉 are k-boson states with k = 1, 2, 3
labeled by the index m, specifying the spin and the ordering label of the RPA
roots. Inserting the boson expansions from Eq. (19) into the expression of the
β+ transition operator one can check that the following non-vanishing factors,
at numerator, show up:

i〈0‖Γ1(i, k1)‖1, 1k1〉if 〈1, 1k2‖Γ†
1(f, k2)Γ2(f, 1)‖1, 21〉f ,

i〈0‖Γ1(i, k1)Γ2(i, k2)‖2, 1k12k2〉if 〈2, 1j121‖Γ†
1(f, j1)‖1, 21〉f ,

i〈0‖Γ1(i,k1)Γ2(i,k2)Γ2(i,k3)‖3,1k12k22k3〉if 〈3,1j12j221‖Γ†
1(f,j1)Γ

†
2(f, j2)‖1,21〉f ,

i〈0‖Γ1(i,k1)Γ2(i,k2)‖2,1k12k2〉if 〈2,1j12j2‖Γ†
1(f,j1)Γ

†
2(f,j2)Γ2(f,1)‖1,21〉f . (22)

The term Ek,m from the denominator of Eq. (21) is the average of the energies
of the mother and daughter states |k,m〉 normalized to the average energy
of the first pnQRPA states 1+ in the initial and final nuclei. Calculations
were performed for the following 6 double beta emitters: 48Ca, 76Ge, 96Zr,
100Mo, 116Cd, 130Te. Since the single particle space, the pairing interaction
treatment, and the pnQRPA description of the dipole states describing the
intermediate odd-odd nuclei used in the present paper are identical with those
from Refs. [13, 14] for ground to ground transition, we don’t present them
again. The strength of the QQ interaction was fixed by requiring that the
first root of the QRPA equation for the quadrupole charge conserving boson
is close to the experimental energy of the first 2+ state. To save the space the
results of the fitting procedure will not be given.

Having the RPA states defined, the GT amplitude has been calculated
by means of Eq. (21), while the half life with Eq. (20). The Fermi integral for
the transition 0+ → 2+ was computed by using the analytical result given in
Ref. [4]. The final results are collected in Table 1.
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Table 1

The GT transition amplitudes and the half lives of the double beta decay
0+ → 2+ are given. Also the Q values are given in units of mec

2. ∆E2 is
the energy shift defined in the text. For comparison, we give also the
available experimental results as well as some theoretical predictions
obtained with other formalisms. The MGT values for the ground to

ground transitions are also listed. For 100Mo we mention the result of
Ref. [20] obtained with an SU(3) deformed single particle basis a) and

with a spherica l basis b)

Nucleus Q2+

ββ |M (0→2)
GT | T

(0→2)

1/2
[yr]

[ mec
2] [MeV−3] present Exp. Ref. [19]

48Ca 6.432 0.901×10−3 1.72×1024

76Ge 2.894 0.558×10−3 5.75×1028 >1.1×1021 1.0×1026

96Zr 5.033 0.834×10−3 2.27×1025 > 7.9×1019 4.8×1021

100Mo 4.874 0.136×10−2 1.21×1025 >1.6×1021 3.9×1024

a)2.5×1025

b)1.2×1026

116Cd 2.967 0.507×10−2 3.4×1026 >2.3×1021 1.1×1024

130Te 3.902 0.620×10−3 6.94×1026 >4.5×1021 2.7×1023

Therein one may find also the available experimental data as well as
some theoretical results obtained with other approaches. One notices that the
half life is influenced by both the phase space integral (through the Q-value)
and the single particle properties which determine the transition amplitude.
Indeed, for 128Te and 134Xe the small Q-value causes a very large half life,
while in 48Ca the opposite situation is met. By contrary the Q-value of 110Pd
is about the same as for 76Ge but, due to the specific single particle and
pairing properties of the orbits participating coherently to the process, the
half life for the former case is more than three orders of magnitude less than
in the later situation. The results for 134Xe and 110Pd mentioned above will
be published elsewhere. The transition matrix elements reported in Ref. [19]
are larger than those given here, despite the fact that the higher pnQRPA
approaches in the two descriptions are similar [21]. The reason is that there
a spherical single particle basis is used whereas here we use a deformed basis.
The same effect of deformation on the GT matrix elements was pointed out by
Zamick and Auerbach in Ref. [22]. Indeed, they calculated the GT transition
matrix elements for the neutrino capture νµ +12 C →12 N + µ− using different
structures for the ground states of 12C and 12N: a) spherical ground states;
b) asymptotic limits of the wave functions and 3) deformed states with an
intermediate deformation of δ = −0.3. The results for the transition rate
were 16

3 , 0 and 0.987, respectively. Similar results are obtained also for the
spin M1 transitions in 12C. The ratio between the transition rates obtained
with spherical and deformed basis explains the factor of 5 overestimate in the
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calculations of Ref. [23], where a spherical basis is used. It is worth mentioning
the good agreement between our prediction for 100Mo and that of Ref. [20]
obtained with a deformed SU(3) single particle basis.

To have a reference value for the matrix elements associated to the tran-
sition 0+ → 2+, one should compare them with the MGT values for the ground
to ground transitions given in Ref. [14]. The ratio of the transition 0+ → 0+

and 0+ → 2+ matrix elements is quite large for 76Ge (398), 100Mo (224) and
96Zr (136) but small for 110Pd (5.26) and 134Xe (6.3). However, these ratios
are not directly reflected in the half lives, since the phase space factors for the
two transitions are very different from each other and moreover the differences
depend on the atomic mass of the emitter.

It is worth mentioning that the double beta transitions to excited states
have been considered by several authors in the past, but the calculations em-
phasized the role of the transition operator and some specific selection rules.
Many of calculations regarded the neutrinoless process. Thus, in Ref. [24] it
was shown that the neutrinoless transition to the excited 0+ for medium heavy
nuclei might be characterized by matrix elements which are larger than that
of ground to ground transition and that happens since in the first transition,
the change of the K quantum number is less. In Ref. [25] it has been stated
that the 0+ → 2+ matrix element depends on the left-right current coupling
and not on the neutrino mass. This could provide a way of fixing the strength
of the left-right coupling if the transition matrix element is experimentally
known. However, according to the calculations of Haxton et al. [2], the ma-
trix element is strongly suppressed and therefore the mentioned method of
fixing the coupling parameter would not be reliable. Although the transition
operator might have a complex structure, many calculations have been per-
formed with the approximate interaction [σ(1) × σ(2)]λ=2t+(1)t+(2) in order
to test some selection rules. Thus, this interaction was used in Ref. [26] for
the transition 0+ → 2+ of 48Ca, using a single j calculation. It has been
proved that the matrix element for this transition is suppressed due to the
signature selection rules. Actually, this result confirms the feature of suppres-
sion for the 0+ → 2+ double beta transition matrix element pointed out by
Vergados [27] and Haxton et al. [2]. The transition to 0+

1 was examined for
A = 76, 82, 100, 136 nuclei by assuming light and heavy Majorana neutrino
exchange mechanism and triliniar R-parity contribution. Higher RPA as well
as renormalization effects for the nuclear matrix elements were included [28].

Here we show that the transition 0+ → 2+ in a 2νββ process is allowed by
renormalizing the GT transition operator with some higher RPA corrections
which results in making the matrix elements from Eq. (22) non-vanishing.
The calculated MGT values of the present work are smaller than those from
Ref. [19] obtained with a spherical single particle basis, which agrees with the
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earlier calculations of Zamick and Auerbach for 12C, showing that the nuclear
deformation suppresses the GT matrix elements.
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