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Abstract. This paper presents an original HSDT deformation hypothesis, which satisfies the 
Saint-Vénaut correlation, some of the Cauchy conditions and –for the very first time- the Gay conditions. In 
some cases – when the bar is thin enough – this deformation theory can be simply reduced at the well-
known Bernoulli hypothesis. 
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1. INTRODUCTION 

It is known that the success in action of modeling the elastic behavior of 
composite materials depends mainly on quality of the elastic deformation 
hypothesis that is used in order to reach this purpose. This paper presents a 
hypothesis like this based on a HSDT (third order) field of elastic displacements. 
This field presents also an advantage: it can take a very simple form in case of thin 
bars: the well – known Bernoulli hypothesis. 

2. THEORETICAL CONSIDERATIONS 

We will consider a right composite bar having a rectangular section. Let’s 
note the length of the bar with L, the bar’s section having the dimensions B and H. 
We’ll consider that the bar has a constant section and – very important – it remains 
right in its non deformed status. The bar has its own reference system Ox1x2x3 
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positioned the way that the plane Ox2x3 is parallel to the plane of the section the 
Ox1, axis being positioned on the length of the bar. 

If the bar is not a homogeneous one, we can apply a homogenization theory 
like the one that had been presented in [1]. In this case the Ox1 axis can be 
considered as describing a masic and elastic symmetry. 

In conditions like those presented we’ll consider an elastic displacements 
field: 

 { } { },tw w i=
rr

 (1) 

where { } { }1 2 3; ;
t

i i i i=
r r r r

 is the unit vector basis of the Ox1x2x3 reference system and  

{ } { }1 2 3, ,w w w w= ⋅ ⋅  is the column vector of w
r

. 

Our assumption is that: 

 [ ( )] ,I IIIw u r r r r r= + θ × − × × × ϕ − × ϕ
r r rr r r r r r r

 (2) 

where: 

1. { } { } { }{ }1 2 3; ;tu u i u u u i= =
r rr

 characterizes the displacement of the elastic 

center of the bar section; 

2. { } { } { } { }1 2 3; ; tt i iθ = θ = θ θ θ
r r r

 characterizes the total rotation of the section 

of the bar. We have: 1( , )u u x t=
r r

 and 1( , )x tθ = θ
r r

; 

3. { }{ }2 30; ;r x x i=
rr

 describes the position of a point of the bar considered in 

its own section, which section is characterized by its 1x  coordinate. 

4. { } { }2 30; ; t
Ir x x i= α β

rr
 is a vector, very much like r

r
, where ,α β  are 

numbers depending on the form of the bar section; 

5. { }{ }2 30; ;
t

iϕ = ϕ ϕ
rr

 is a vector that considers the rotations of the bar 

sections only around the 2x  and 3x  axis: 

 3
2 2

1

u
x

∂
ϕ = θ +

∂
; 2

3 3
1

u
x

∂
ϕ = θ −

∂
, (3) 

where:  

3
3,1

1

u
u

x
∂

=
∂

 and 2
2,1

1

u
u

x
∂

=
∂

 describes the rotations of the sections due to simple 

bending (Bernoulli); we have: 1( , ).x tϕ = ϕ
r r
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6. { }{ }3 3
2 30; ;IIIr k x k x i= α β

rr
 is a correcting vector, k being a corrector (scalar) 

having no physical dimension. 
The vectorial relations (2) produces [2], elementarely, the following relations: 

 

2 2
1 1 3 2 2 3 2 3 3 22 3

3 3
3 22 3

2 2 1 3

3 3 1 2

(1 ) ( 1)

.

w u x x x x x x

k x k x

w u x

w u x

 = − θ + θ − αϕ + βϕ +


+ − αϕ + − βϕ


= − θ
 = + θ

 (4) 

In case we are considering a homogeneous bar (or a “homogenized” bar) [3, 4] 
we put: 

 
2

4
B

α = ; 
2

4
H

β = ; 
14
9

k = ; (5) 

So, (4) becomes, with (3): 
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( ) ( )

4 5 4
( ) ( )

9

.

uu
w u x x x x x x

x xH B
uu

x x
x xB H

w u x

w u x

∂∂ = − θ + θ + θ − − θ + − ∂ ∂
 ∂∂ − θ − + θ + ∂ ∂
 = − θ


= + θ

 (4’) 

It can be elementarely proved that, using a matrix formalism (4) becomes, 
taking account of (3): 

 { } { } [ ]{ } { }14
[ ][ ][ ][ ] [ ][ ][ ][ ]

9
w u r r T r r r T = − θ − + ∆ ∆ ϕ  

, (5) 

where: 
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2

2

0 0 0
4

[ ] 0 0

4
0 0

T
H

B

 
 
 
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 
 
 
  

.  (6) 

It can be elementarely verified that the Saint-Vénant conditions are respected: 
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 [SV]([D]{ }) {0}w = , (7) 

where: 
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 (9) 

are the operator [D] of the linear-elastic deformations and [SV] is the Saint-Vénant 
operator. 

Considering an ortothropic elastic symmetry the constitutive equation of the 
material of the bar is: 

 { } { }[ ]([D] )C wσ = ; (10) 

where [C] is the rigidy matrix: 
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[ ]
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 (11) 

where:  

 , , , 1,3ijkl jikl ijlk klijC C C C i j k= = = =  (12) 

and: 

 { } { }11 22 33 23 13 12; ; ; ; ; tσ = σ σ σ σ σ σ  (13) 

is the very well known strain column vector. 
Using (3) in (8) it result a very important issue: 

 23 32 0σ = σ =  (Cauchy). (13') 

The Gay conditions [5] for a bar like this which is studied take the following 
particular form: 

{ } { }14
[ ][ ][ ][ ] [ ][ ][ ][ ] d 0

9
S

r T r r r T S + ∆ ∆ ϕ =  ∫∫ , 

 { } { }14
[ ] [ ][ ][ ][ ] [ ][ ][ ][ ] d 0

9
S

r r T r r r T S + ∆ ∆ ϕ =  ∫∫ , (14) 

the bar being considered a homogeneous one. In (14) we noted S as the bar section 
surface. 

The fact of the matter is that the Gay conditions [5] are taking the next form, 
in case of homogeneous bars, that elementarely results from the matrix form (14): 

 
1 2 3

1 2 1 3

d 0; d 0; d 0;

d 0; d 0,
S S S

S S

w S w S w S

w x S w x S

∆ = ∆ = ∆ =

∆ = ∆ =

∫∫ ∫∫ ∫∫

∫∫ ∫∫
 (15) 

where we have been noted: 
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So, the relations (14) or (15) are, in fact, the following: 
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3. CONCLUSIONS 

We conclude that for an orthotropic homogeneous right composite bar, free 
of tensions on its frontier, we have at our disposal a displacements field of third 
order (HSDT) that satisfies some very important issues: 

– it satisfies the Saint-Vénant, conditions of compatibility; 
– 23 32 0σ = σ ≡ , on the frontier; 
– the Gay conditions are satisfied, so we can assimilate the deformed section 

with a plane one; 
– the displacements field, in its matrix form, is written using some significant 

issues concerning the form of bar section, issues that have important 
geometrical interpretation. 

This paper is only a very small contribution added to the generally resuming 
effort to step beyond the Bernoulli-hypothesis which simply doesn’t work in case 
of non-homogenous (composite) materials. 

The work is far from being finished. 
The theoretical research must be continued, at least for homogenous 

materials, in order to reach a deformations hypothesis that could satisfy more in 
terms of the condition to be the strain-stress status is zero on the frontier (here we 
have only 23 32 0σ = σ = ). 

In case of non-homogenous materials we shall use a “homogenization 
method” combined with this (or a better one) displacements field. 

Elsewhere, we must be fair and recognize that all considerations we made are 
available only in case of right bars. The case of curved bars raises some particular 
difficult problems and must be treated separately. Also the bars (whatever they are 
right or curved) which are not tensions free on the frontier rises some enormous 
difficulties of studying them. 

Finally, we have to add that in case of non-homogenous bars is not 
appropriate to combine whatever homogenization method with no matter HSDT 
deformation theory; it must be verified the compatibility of strain-stress conditions 
between whatever two constituents of the composite material and the strain-stress 
conditions on the frontier of the material. 
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