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Abstract. A theoretical study of resonant tunneling in multilayered heterostructures is 
presented based on an exact solution of the Schrödinger equation under the application of a constant 
electric field and a uniform magnetic field. By use of the transfer matrix approach, the transmissivity 
of the structure is determined as a function of the incident electron energy. The results show good 
agreement with other existing models as well as with the bound-state energies. The solutions obtained 
are exact and can be generated easily by using MathCad. Based on these calculations, a new class of 
resonant tunneling superlattice devices can be designed. 
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1. INTRODUCTION 

Advanced crystal growth techniques, such as metal - organic vapor phase 
epitaxy (MOVPE) and molecular beam epitaxy (MBE) make it possible to obtain 
quantum wells and superlattices with reproducible properties at the atomic scale. 

By a further reduction in the dimensionality, new electronic properties are 
revealed in one-dimensional quantum wires [1] and zero-dimensional quantum dots 
(the ultimate quantum confinement structure) [2]. 

Most of the initial work on electron transport in small systems has dealt with 
metallic samples. More recently, increasing attention has been paid to 
semiconductor-insulator structures, which can now be fabricated and controlled on 
a very small scale. In the absence of impurities, the sample boundaries become the 
only source of electron scattering. The short wavelength of the Fermi electrons in 
metals validates the use of a semiclassical picture where the electron is reflected by 
the internal walls of the sample and moves ballistically between collisions. On the 
other hand, the electron wavelength in semiconductor quantum wires may be 
comparable to the size of the sample, and in particular to the effective width of the 
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wire. In this regime, one can view the electron motion as the propagation of a wave 
in a guide, and quantum wires may appropriately be called "electron waveguides". 
This notation has recently found clear experimental verification.  

This material is organized as follows: Section 2 gives details of geometry and 
composition for the TBRT device. Section 3 outlines the theoretical approach. In 

Section 4 we present numerical results of the transmission probability and 2Ψ  for 
some special TBRT structure. 

2. GEOMETRY AND COMPOSITION FOR THE TBRT DEVICE 

The conduction-band energy diagram for a TBRT structure is shown in 
Fig. 1 (a,b). By simply eliminating the coupling barrier, a TBRT structure transforms 
into a double-barrier (DBRT) one. These structures consist of two heavily doped 
n+ GaAs layers emitter and collector (˜ 2×1017 cm-3), undoped AlGaAs barriers 
(30Å,Y=0.6) and the undoped GaAs quantum well (QW) regions (45Å). The 
conduction band offset ? Ec, effective mass m*(z) and dielectric constant e(z) in 
each region of the DBRT or TBRT structure are determined as function of the 
aluminum concentration Y(z), by the following approximations [3]: 

 ? Ec(z)=0.75Y(z) eV   for 0=Y(z)=0.45 (1a)  

 ? Ec(z)=0.75y(Z)+0.69[y(Z)–0.45]2 eV    for 0.45<Y(z)=1  (1b) 

 m*(z)/m0–0.067+0.083Y(z)    for 0<Y(z)<1 (1c) 

 e(z)/e0=13.1–3.0Y(z)    for 0=Y(z)=1 (1d) 

 
Fig. 1 – The effective one-dimensional potential V(z) (in eV) as a function of transverse magnetic 
field B in a symmetric triple barrier resonant structure with LB1=LB2=LB3=30Å, YB1=YB2=YB3=0.6, 
LQW1=LQW2=45Å, for zo=0 (a) and zo=L/2 (b). The origin for zo lies at the front of the top barrier and 

L stands for the total thickness of the TBRT structure. 
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3. THEORY 

We assume for our resonant structures that the incoherent electron scattering, 
space-charge effects, many-electron effects and phonon-assisted tunneling are 
neglected. However, it should be noted that the interaction with phonons might be 
responsible for the satellite peaks in DBRT current, at voltages just above the 
resonant peak [4, 5]. 

Using the effective-mass single electron approximation, we then separate the 
three-dimensional single-electron Schrödinger equation into parts which are 
transverse and parallel to the device layers. The total electron energy Etot is then 
written as the sum of these parallel and transverse components: 
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where IIk is the wave vector in the x-y plane parallel to the AlyGa1-yAs/GaAs 

interfaces. E is the electron kinetic energy perpendicular to the interfaces (i.e. in the 
z direction). 

The total wave function can be expressed as a product: 
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A represents the device area IIk  and IIr  are vectors in the x-y direction, and 
ϕ  is the solution to the following one-dimensional Schrödinger equation: 
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In this relation m*(z) denotes the position-dependent electron (band gap) 
effective mass and U(z) is the potential seen by a single electron, which includes 
effects of both conduction-band discontinuities at AlxGa1-xAs/GaAs interfaces and 
external applied voltage. This model can be seen in Fig. 2.  

To solve for the transmission probability, we use a transfer–matrix method 
similar to the one presented, for example, by Ando and Itoh [6]. This method, in 
which the exact potential is approximated by a series of steps (details can be seen 
in Fig.2), has among its advantages computational simplicity and good accuracy.  
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Fig. 2 – Schematic drawing of the exact potential U(z) for a double-barrier structure and the step 

approximation used in transfer matrix calculations. Device has parameters d1=60Å, d2=30Å,  
and V0=684meV. 

The main problem is quit simple, if we treat the potential as constant over 
each step. In this case the solution to the one-dimensional Schrödinger equation is 
given in the jth step as a superposition of plane waves: 
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and we have the z component of the complex wave vector Kj given by: 
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and j = 0,1,2,…,N, N+1 for a total of N+1 steps. Here Uj and m*
j are the potential 

and effective mass associated with step j, and zj is distance measured from the left-
hand side of the jth step. Furthermore, the steps are all assumed to have the same 
length a and j values increase as the structure is traversed from left to right (see 
arrows in Fig. 2). 

Imposing continuity of the wave function ϕ and its appropriately normalized 
derivative (1/m*)(dϕ /dz) at the boundary between steps j and j+1, one derives a 
matrix formula that relates the successive A and B plane-wave coefficients, namely 
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where 
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At this moment the Mj matrices are then multiplied together to relate the 
plane-wave coefficients A0 and B0 in the emitter layer to the coefficients AN+1 and 
BN+1 in the collector layer: 
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If we use the relation det(Mj)=ρj, which in turn leads to det(Mtot)=k0/ kN+1 and 
setting A0=1 and B0=0 in Eq. (10) corresponding to an electron incident form the 
left-hand side of Fig.2 we find a simple formula for the transmission amplitude 
AN+1. 
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Note that the effective-mass factors cancel because the collector and emitter 
layers have identical material composition. 

Now the transmission probability T can be write as the ratio of transmitted 
particle flux and depends on both the incident electron energy E and the applied 
voltage V. 
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Once the transmitted wave amplitude AN+1 is found from the Eq.(12), the left 
electronic wave function can be calculated across the entire structure by inverting 
the Mj and then successively solving for the Aj and Bj according to: 
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where 
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Once the transmission probability is obtained, the current density through the 
structure is calculated using the Tsu-Esaki current formula [7]. 
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where EF is the Fermi energy, T is the temperature, E is the electron kinetic energy 
transverse to the device layers, kb is the Boltzmann constant, and m* is the electron 
effective mass in GaAs. 

We assume a constant magnetic field in the x-direction B=(B,0,0). This can 
be represented by a vector potential in the gauge A=(0,–Bz,0). Then the following 
Hamiltonian describes a spinless particle in a layer of the structure, with an 
effective mass m*(z) and charge –e, subject to a constant and uniform transverse 
magnetic field B: 
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where V(z) is the potential-energy seen by a single electron, which includes effects 
of both conduction-band discontinuities at GaAs/AlyGa1-y interfaces and external 
applied bias. The incoherent electron scattering, space-charge effects, many-
electron effects and phonon-assisted tunneling are neglected. However, it should be 
noted that the interaction with phonons may be responsible for the satellite peaks in 
DBRT current, at voltages just above the resonant peak [8]. The stationary 
Schrödinger equation corresponding to the Hamiltonian (17) is therefore. Notice 
that the choice of vector potential is not unique for the given magnetic field. With a 
different one the solutions would then look very different while the physics must 
remain the same. It is only with our choice of gauge, that the solutions have 
translation symmetry in the x and y directions. Therefore the wave function ? (r) 
can be written as a product of a plane wave with an anvelope wavefunction f (z) 
describing the motion of the tunneling electrons along the z-direction of the 
structure ( )( ) ( )exp i x yr z K x K y = + ψ ϕ . By substituting this wave function into 

the stationary Schrödinger's equation we obtain a basically one-dimensional 
Schrödinger equation for the anvelope wavefunction f (z): 
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We note that the influence of the magnetic field is included by changing the 
ordinary superlattice potential and external applied bias effects V(z), with an 
effective one dimensional potential Veff : 
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0 0B yz l K= , with the magnetic length, and ? c(z) stands for the cyclotron 

frequency associated with a z-dependent effective mass m*(z). The parameter zo 
gives the center of the cyclotron orbit. Due to ionized impurity scattering, the 
coherence of the Landau motion is destroyed in emitter and collector regions. 
Hence it is expected that the effect of the magnetic field in these regions be small 
enough to set for the magnetic vector potential Aemitter = Acollector ˜ 0. We used a 
transfer-matrix (TM) method [9] to solve this one-dimensional Schrödinger 
equation and to calculate the transmission probability, resonant line widths, the 
transit time and the anvelope wavefunctions f (z) for the motion along z-axis, under 
or without applied bias Va and magnetic field B, perpendicular to z-axis. 

This method has been widely used due to its simplicity related with the use of 
only 2×2 matrices and with the possibility of studying superlattices formed by any 
sequences oflayers. We discretize the barrier and the quantum-well (QW) regions 
into a finite number of steps, so that, at any step, a flat-band potential 
approximation can be used. 

Ando and Itoh [6] have shown that as the number of steps increases and  
the new step-like potential will be closer and closer to Veff(z), the solution  
rapidly converges to a single result. Therefore, at any step, the solution to the 
Schrödinger equation (18) is given as a superposition of waves 

( ) exp( ) exp( )z zz a K z b K zϕ = ⋅ + ⋅ − ?, with the z component of the wave vector Kz 
given by: 
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where 0m∗  and Ex,0 are the effective mass and the kinetic energy along x axis, in the 
emitter region. Using a boundary condition that conserves carrier current (the 
continuity of the anvelope wavefunction f (z), and its first derivative divided by 
m*(z),f (z)'/m*), the coefficients aj and bj of region j are joined to those of region 
j+1 by a 2×2 transfer matrix Tj,j+1 of determinant 1: 
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4. TRIPLE BARRIER RESONANT STRUCTURE 

In this section we study how energy level of the coupling barrier influence 
the transmission probability coefficient. Also we present numerical results showing 
the influence of coupling barrier thickness, and position of it in the quantum well 
on transmission probability and coupling energy. 

4.1. THE INFLUENCE OF THE COUPLING BARRIER ENERGY  
ON TRANSMISSION PROBABILITY  

FOR A GaAs/AlYGa1-YAs (TBRT) DEVICE 

We consider a symmetric triple-barrier resonant tunneling device (TBRT), 
with same aluminum concentration in lateral AlGaAs barriers xB1=xB5=0.6 (that 
means m2

*=0.1168m0, and V0=0.465525eV). 
For the quantum well GaAs regions we use m1

*=0.067m0, V0=0 eV. For the 
coupling barrier energy we will use three different aluminum concentration values. 

Sharp peaks occur in the transmission for the resonant energies E01, E02 and 
E11, E12 (Fig. 3). These are the energies corresponding to the ground quasibound 
doublet and the first excited one. Increasing the coupling barrier aluminum 
concentration the transmission peaks shift higher in energy. It should be noted that 
the coupling energy for the ground quasibound doublet has a different increase than 
the excited one. 

 

  

Fig. 3 – Transmission probability versus incident energy for TBRT with different coupling barrier energy. 
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These doublets are generated by splitting the symmetric ground states and the 
antisymmetric excited ones of an isolated quantum well into a symmetric-
antisymmetric pair. 

The symmetric states have, as expected, lower energy. Such a splitting is 
caused by the coupling between the wells (this means that the degeneracy of each 
level is removed due to a coupling barrier of finite thickness). Also, each resonant 
level has a finite width induced by the coupling with the left (emitter) and right 
(collector) justified states in the continuum spectrum. 

Figure 3 shows a plot of the transmission probability vs. incident energy for a 
TBRT for different aluminum concentration values. 

4.2. THE INFLUENCE OF THE THICKNESS COUPLING BARRIER  
ON TRANSMISSION PROBABILITY  

FOR A GaAs/AlYGa1-YAs (TBRT) DEVICE 

Our triple-barrier resonant structure (TBRT) has dB1= dB5=30A, dG2=dG4=60A, 
xB1=xB5=xB3=0.67, xB2=xB4=0, but the coupling barrier has a different thickness. For 
this time Al molar fraction of the central barrier is yB4=0.67 (has the same height as 
first and last barrier). 

We observe that the first resonant doublet has a specific behavior for 
different values of the central barrier. The first resonant level E(1,1) slowly decease 
from 0.161805meV for dB4=50Å, to 0.12687meV for dB4=10Å, about 22% from the 
initial value. Meanwhile the second resonant doublet increasing with 44meV from 
0.163353eV for dB4=50Å up to 0.207715eV for dB4=10Å. That means about 27% 
from the initial value. The ground quasibound doublet splitting more and more 
with central barrier thickness less. 
 

 
Fig. 4 – Transmission probability versus incident energy for TBRT with different thickness  

of coupling barrier. 
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4.3. TRANSMISSION PROBABILITY FOR TBRT WITH APPLIED BIAS 

For numerical simulation we use a TBRT with the same thickness of the 
lateral barriers as the central barrier (symmetric structure). LB1=LB2=LB3=30A, 
YB1=YB2=YB3=0.6 (m1

*=0.067m0, m2
*=0.09439m0), LQW1=LQW2=45A. 

 

 
Fig. 5 – The effect of an applied bias on the transmission probability  

for the first resonant doublet of the TBRT. 

For the values of applied bias less then V0 an maximum for the transmission 
coefficient can be seen. 

As we increase the applied bias the transmission probability spectrum slowly 
decease down to small electron energy values. 

4.4. TRANSMISSION PROBABILITY AND COUPLING ENERGY VS. 
MAGNETIC INDUCTION 

We have plotted in Fig. 6(a, b) the effect of an increasing transverse magnetic 
field B on the transmission probability, for the first and the second resonant 
doublet, respectively. The TBRT structure is the same as in Fig. 1, with zero 
applied bias and zo=0. In this case, for B?0, the effective potential is no longer 
symmetric and therefore the transmission probability no longer achieves a peak 
value of 1. 
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a)                                                                                        b) 

Fig. 6 – The effect of an increasing transverse magnetic field on the transmission probability, for the 
first (a), and the second (b) doublet. The TBRT device with no applied bias and zo=0. Numbered 

arrows indicate the magnetic induction in units of Tesla. 

 
Sharp peaks occur in the transmission for the resonant energies E01, E02 

(Fig. 6a) and E11, E12 (Fig. 6b). These are the energies corresponding to the ground 
quasibound doublet and the first excited one. Increasing the magnetic field the 
transmission peaks shift higher in energy. This is reasonable because the magnetic 
contribution to Veff is, somehow, equivalent to a reverse bias applied on the 
structure. Figure 7(a, b) show a plot of the resonant lines versus magnetic induction 
B, for the first and second doublet, respectively. The results presented show that the 
splitting between the resonant lines (and hence the coupling energy vs. B), for each 
resonant doublet, also shifts up in energy by increasing the magnetic induction. It 
should be noted that the coupling energy for the ground quasibound doublet is 
much more affected by the magnetic field than the excited one. These doublets are 
generated by splitting the symmetric ground states and the antisymmetric excited 
ones of an isolated quantum well into a symmetric-antisymmetric pair. The 
symmetric states have, as expected, lower energy. Such a splitting is caused by the 
coupling between the wells (this means that the degeneracy of each level is 
removed due to a coupling barrier of finite thickness). Also, each resonant level has 
a finite width induced by the coupling with the left (emitter) and right (collector) 
justified states in the continuum spectrum. Note that, by increasing the thick nesses 
of the top and bottom barriers, the results are rapidly converging to those 
describing an isolated system with two coupled quantum-wells or an isolated 
quantum well (when the coupling barrier is removed). 
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Fig. 7 – Resonant lines versus magnetic induction, for the ground doublet (a) and the excited doublet 

(b) zo=0, without applied bias. 

5. CONCLUSIONS 

In this letter we have numerically examined the transmission probability and 
electronic wave functions in GaAs/AlyGa1-yAs triple-barrier structures. 

The sensitivity of spatial properties of electronic wave functions on DBRT 
device parameters suggests the possibility of “wave-function engineering”. Thus, 
for example, the width of the well and the height of the barriers might be 
experimentally designed in order to minimize the effect of electron-confined-LO-
phonon coupling, or to enhance scattering via one phonon mode over another. The 
effects of band nonparabolicity may also become important if the electrons are 
sufficiently “hot”. While there are sophisticated ways of treating such effects, the 
simplest method is to define an energy-dependent effective mass [10]. This has 
been found to give good agreement between theory and experiment and we note 
that such an energy-dependent effective mass can be easily incorporated into our 
transfer-matrix calculation. Finally, we note that other complex effects such as 
many-electron interaction, interface scattering, can be important in certain real 
devices [11]. The possible role of such effects in experimental measurements 
depends sensitively on device parameters and should be considered in constructing 
a complete picture of resonant tunneling in double and triple barrier resonant 
structures. 
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