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Abstract. An approach to natural modes in the scattering by a central potential of complex
strength g with a barrier, based on the global method for all S-matrix poles analysis is presented. The
Riemann surface Rg over the g-plane, on which the pole function k = k(g) is single-valued and
analytic is constructed. By using the Riemann surface approach we treat in a unified way all the
natural modes (bound and resonant states) of the system particle + potential. New classes of poles and
resonant states (exotic) are identified and their properties are studied.
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1. INTRODUCTION

The natural modes of the system (particle + potential) are defined as those
regular solutions of the 3D Schrödinger equation that satisfy the so-called
Sommerfeld radiation condition at infinity [1]. The natural modes are radiative (in
which case the energy is complex) or nonradiative (in which case the energy is
real). The radiative natural modes are identified with the resonant states and the
nonradiative ones with bound states of the system [1]. By using the Riemann
surface approach to bound and resonant states we treat in a unified way all the
natural modes of the system. The resonant structures in the cross section of many
interesting problems, such as field ionization, photo-ionization, electron scattering
on atoms and molecules, and nuclear scattering are, in most cases, ascribed to
resonant states of the quantum system. The most fundamental approach to resonant
scattering is through the analytical properties of the S-matrix [2–4]. Let us consider
the nonrelativistic scattering of a particle by a central potential V(r) = gVn(r) +
+ Vbar(r), where the short range complex nuclear potential Vn of strength g ∈ C has
a square or a Woods-Saxon form factor, and Vbar is a potential barrier. The
S-matrix poles are the solutions k(g) of the equation ( ) 0,g k+ , =F  where ( )g k+ ,F
is the Jost function, provided that ( ) 0.g k− , ≠F  Here ( )g k+ ,F  and ( )g k− ,F  are
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the denominator and the numerator, respectively of the S-matrix element. Let k(g)
be the function which gives the S-matrix pole position as a function of the potential
strength g. The function k(g) is a many-valued function of the complex variable g.
The S-matrix poles distribution in the k-plane has been extensively studied by
using the pole trajectory method: a particular path in the complex g-plane is chosen
and the corresponding trajectory of the S-matrix poles in the k-plane is determined.
The pole trajectory method does not provide all S-matrix poles, some important
poles being lost, and one can never be sure that the same pole is followed. In order
to have a complete description of the S-matrix poles in the k-plane, the Riemann
surface approach based on a global analysis of the function k(g) must be used.

2. RIEMANN  SURFACE  APPROACH
TO  BOUND  AND  RESONANT  STATES

The Riemann surface approach to S-matrix poles consists in constructing the
Riemann surface Rg over the g-plane, on which the pole function k(g) is single
valued and analytic. This implies the division of the Riemann surface Rg into sheets
Σn and the construction of the Riemann sheet images n′Σ  in the k-plane. If g takes
values on a given Riemann sheet Σn, then the pole k(g) belongs to the k-plane
Riemann sheet image .n′Σ  The number n that labels the Riemann sheet Σn and the
k-plane Riemann sheet image n′Σ  is used as a new quantum number for this pole
and for the corresponding state of the quantum system. A schematic illustration of
the method is given in Fig. 1.

Fig. 1 – a) The many-valued function
k(g) defined on the complex g-plane and
its distinct values in the k-plane. b) The
single-valued function k(g) defined on
the Riemann surface over the complex
g-plane. The branch-points indicated by

 and the branch-lines that join the
                     sheets are shown.
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The method has been used for various shapes of potentials: a rectangular or
Woods-Saxon nuclear potential plus a barrier which can be a rectangular or
Coulomb barrier, as well as a centrifugal component resulted from partial waves
decomposition [5–9]. For each of these shapes of potentials the singular points
have been determined as solutions gi of the system

( ) 0g k+ , = ,F (1)

( ) 0g k k+∂ , /∂ = .F (2)

From among these singular points those that are branch points may be found
by permitting the variable g to describe successive small circuits round each
singular point gi, and by observing whether the function k(g) returns to its initial
value. Let m > 1 be the smallest number of rotations after which one obtains again
the initial value of the function k(g). Then gi is a branch point of order m – 1 and m
sheets of the Riemann surface are joined at this point. The border of any k-plane
image of a Riemann sheet is obtained by letting g trace a path along the cuts on the
corresponding Riemann sheet, without crossing them, and along a large radius
circle joining the cuts.

3. MERITS  OF  THE  RIEMANN  SURFACE  APPROACH
TO  BOUND  AND  RESONANT  STATES

The Riemann surface approach to bound and resonant states, based on the
global method for all S-matrix poles analysis has several merits:
1. Instead of analyzing an infinity of poles in the k-plane it allows us to analyze

the single pole on each Riemann sheet image n′Σ  in the k-plane. In this way no
pole can be lost and one can be sure that the same pole is studied.

2. By the Riemann surface approach to a given state n of the quantum system one
associates a sheet Σn of the Riemann surface Rg. This approach allows not only
studying each state n, but also understanding the transition from a state n to
another state m as a result of the potential strength variation. Indeed, let us
suppose that g describes a closed contour which starts from a point on sheet Σn

and encloses the branch-point joining the sheets Σn and Σm. Then the pole
passes from the sheet image n′Σ  to the sheet image ,n′Σ  i.e. the system makes a
transition from the state n to the state m, as a result of potential strength
variation. Here the states n and m can be either bound or resonant.

3. For a given potential form factor V(r) the well and barrier with absorption and
emission are treated simultaneously, which allows a smooth transition from one
case to the other. Indeed, as g covers all the complex plane, each Riemann sheet
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Σn for the potential gV(r) + Vbar(r) contains a wall and a barrier with absorption
or emission. If g follows a continuous path on a given sheet Σn, then the
corresponding pole follows a continuous path in the k-plane sheet image .n′Σ

4. The global method for all S-matrix poles analysis is stable under the potential
strength variation. Indeed, one cannot create or destroy S-matrix poles by
varying the strength of the potential in the analyticity domain of the pole
function k(g). The poles can be created or destroyed only at the branch-point
g = 0.

5. A new quantum number n with topological meaning (label of the Riemann sheet
Σn and of its k-plane image )n′Σ  is introduced in order to label the pole
belonging to n′Σ  and the corresponding state.

6. The Riemann surface approach allows the identification of a new class of
S-matrix poles (exotic poles) with properties that differ from those of the usual
S-matrix poles. While the usual resonant state poles move towards the
imaginary k-axis and become bound ( 0)kℑ >  or virtual ( 0)kℑ <  state poles as
the strength of the potential well is increased, the exotic resonant state poles
remain in some bound regions of the lower k half-plane, even for g → ∞.

4. PROPERTIES  OF  THE  EXOTIC
RESONANT  POLES  AND  STATES

1. The exotic resonant state poles remain in the neighborhood of some special
points called “stable points” which act as “attractors” when the strength of the
potential well increases indefinitely. These exotic resonant state poles are
insensitive to the behavior of the potential in the region of the well, and are
almost completely determined by the geometric shape of the potential barrier.
The number and position of the bound regions in the k-plane where the exotic
poles are located depends on the shape and height of the barrier. For a
rectangular barrier there are exotic poles only for strong absorptive potentials.
There is an infinite number of Riemann sheet images on which there are
situated exotic poles. On each Riemann sheet image there is only one bound
region for the exotic resonant pole. In the case of a rectangular or Woods-Saxon
well with centrifugal barrier there are exotic poles on a finite number of
Riemann sheet images, the number of these sheet images increasing as the
orbital angular momentum l increases. The exotic poles occur for either strong
or week absorption. In the case of a rectangular or Woods-Saxon well with
Coulomb and centrifugal barrier there is an infinite number of Riemann sheet
images where the exotic poles are situated, and the exotic poles occur for either
strong or week absorption. The situation is illustrated in Fig. 2.
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Fig. 2 – The first four sheets Σn and the
aggregates of their k-plane images .n′Σ
In Figs. (a) and (b) the case of a rectan-
gular well followed by a rectangular
barrier is shown; in Figs. (c) and (d) the
case of a rectangular or Woods-Saxon
well with centrifugal barrier is illus-
trated; in Figs. (e) and (f) the case of a
rectangular or Woods-Saxon well with
 Coulomb and centrifugal barriers given.

2. The way the exotic resonant state poles move in the k-plane as the strength of
the potential well increases is shown in Fig. 3. One can see that there are some
“attractors” in the k-plane towards which the pole move.

Fig. 3 – The pole trajectories on the sheet
image 1′Σ  for the potential made of a rec-
tangular well followed by a rectangular
barrier. The strength of the potential well
varies as g = λ(a + ib) with a = 20, b = ±1
and the strength of the barrier is V1 = 16. By

(1)
zk  the attractor is marked. The numbers

besides the curves gave the values of the
                           parameter λ.
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3. The wave functions of the resonant states corresponding to poles situated in the
neighborhood of the attractors are almost completely confined to the region of
the barrier. This is illustrated in Fig. 4 for the potential made of a rectangular
well followed by a rectangular barrier. As a consequence of the localization of
their wave functions the exotic resonant states are almost insensitive to the
behavior of the potential inside the barrier region. This fact is very important,
due to the fact that in the nuclear physics the potential is much better known in
the barrier region than in the well region. The small amplitude of the wave
function of an exotic resonant state inside the well leads to a small overlap with
the adjacent resonant states of the continuum, that are mostly confined to the
compound nucleus radius. This small overlap confers stability to the exotic
resonant states against the dissolution into the complex neighboring compound
nuclear states. The exotic resonant states are a new kind of doorway states,
whose stability is a consequence of the localization of the wave function, rather
than of a symmetry. In the case of a nuclear well with Coulomb and centrifugal
barrier it has been shown [6, 11] that the parent quasimolecular resonant states
excited in heavy ion reactions are exotic resonant states. In this case it has been
finally understood how a short-range nuclear attraction could be operative in
order to generate resonant states having the wave function localized outside the
potential well. Moreover, the properties of the parent quasimolecular resonant
states (excitation energies, deviation from the linear dependence of excitation
energies on l(l + 1), widths, stability, observability) result naturally from the
general properties of the exotic resonant states.

Fig. 4 – The moduli of the wave function
of an usual resonant state (a) and of an
exotic resonant state (b) for the potential
made of a rectangular well followed by a
rectangular barrier. The usual pole is
situated on 1,′Σ  while the exotic pole is

situated on 5.′Σ  The same radii for the
well and the barrier are taken. The values
of the potential well depth g and the
          corresponding poles are given.

The Riemann surface approach to all natural modes of the quantum system
has been generalized to the case of a two channel model [12]. It has been shown
that besides the branch-points which originate from the branch-points for the
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uncoupled channels there are new branch-points which are intrinsic to the coupling.
The classification of resonant states as Feshbach or Fonda-Newton resonant states
[13, 14] has been clarified by studying the behaviour of the corresponding resonant
state poles as the strength of the coupling V12 → 0. Taking into account the
analysis of the branch-points four classes of Riemann sheets have been identified:
on the images of the first class Riemann sheets there are poles that correspond to
bound or shape resonant states, on the images of the second class there are poles
corresponding to bound or Feshbach resonant states, and on the images of the third
and fourth classes of Riemann sheets there are poles corresponding to bound or
Fonda-Newton resonant states. In this case two new quantum numbers (m, n) with
topological meaning, which label each bound or resonant state, have been
introduced. The first indicates the class of the Riemann sheet, while the second
labels the sheet for each class. The approach provides a new insight into the nature
of the resonant states for two coupled channels. The distinct origin and the
relationship of the Feshbach and Newton-Fonda resonant states have been clarified.
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