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Abstract. In the framework of the theory of open systems based on quantum dynamical
semigroups, we solve the master equation for two independent bosonic oscillators interacting with an
environment in the asymptotic long-time regime. We give a description of the continuous-variable
entanglement in terms of the covariance matrix of the quantum states of the considered system for an
arbitrary Gaussian input state. Using the Peres–Simon necessary and sufficient condition for
separability of two-mode Gaussian states, we show that the two non-interacting systems immersed in
a common environment and evolving under a Markovian, completely positive dynamics become
asymptotically entangled for certain environments, so that their non-local quantum correlations exist
in the long-time regime.
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1. INTRODUCTION

Quantum entanglement represents the physical resource in quantum
information science which is indispensable for the description and performance of
such tasks as teleportation, superdense coding, quantum cryptography and quantum
computation [1]. Therefore the generation, detection and manipulation of the
entanglement continues to be presently a problem of intense investigation.

When two systems are immersed in an environment, then the decoherence
phenomenon usually occurs. At the same time, an external environment can also
generate a quantum entanglement of the two systems and therefore an additional
mechanism to correlate them [2–4]. In certain circumstances, the environment
enhances entanglement and in others it suppresses the entanglement and the state
describing the two systems becomes separable. Suppose the two systems are
prepared in an initial separable state without either classical or quantum
correlations and put into an environment. The structure and properties of the
environment may be such that not only the two systems become entangled, but also
such that a certain amount of entanglement survives in the asymptotic long-time
regime. The reason is that even if not directly coupled, the two systems immersed
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in the same environment can interact through the environment itself and it depends
on how strong this indirect interaction is with respect to the decoherence whether
entanglement can be generated at the beginning of the evolution and, in the case of
an affirmative answer, if it can be maintained for a definite time or it survives
indefinitely in time.

In the present work we investigate the existence of the continuous variable
entanglement for a subsystem composed of two identical bosonic oscillators
interacting with an environment. Their evolution is described by a Markovian
dynamics in the framework of the theory of open quantum systems, based on
completely positive dynamical semigroups. We are interested in discussing the
correlation effect of the environment, therefore we assume that the two systems are
independent, i.e. they do not interact directly. The initial state of the subsystem is
taken of Gaussian form and the evolution under the quantum dynamical semigroup
assures the preservation in time of the Gaussian form of the state. We only
investigate here the asymptotic behaviour of the subsystem states. The time
evolution of the entanglement, in particular the possibility of the so-called
“entanglement sudden death”, that is suppression of the entanglement at a certain
finite moment of time, is discussed elsewhere.

In Sec. 2 we write the equations of motion in the Heisenberg picture for the
considered open system. With these equations we derive in Sec. 3 the asymptotic
values of the variances and covariances of the coordinates and momenta which
enter the asymptotic covariance matrix. In Sec. 4, by using the Peres-Simon
necessary and sufficient condition for separability of two-mode Gaussian states
[5, 6], we investigate the behaviour of the environment induced entanglement in
the limit of long times. We show that for certain classes of environments the initial
state evolves asymptotically to an equilibrium state which is entangled, while for
other values of the parameters describing the environment, the entanglement is
suppressed and the asymptotic state is separable. The existence of the quantum
correlations between the two systems in the asymptotic long-time regime is the
result of the competition between entanglement and decoherence. A summary is
given in Sec. 5.

2. EQUATIONS  OF  MOTION  IN  HEISENBERG  PICTURE

We are interested in the generation of entanglement between two harmonic
oscillators due to the back-action of the environment on the subsystem. Since the
two harmonic oscillators interact with a common environment, there will be
induced coupling between the two oscillators even when initially they are
uncoupled. Thus, the master equation for the two bosonic oscillators must account
for their mutual interaction by their coupling to the common environment. We shall
study the dynamics of the subsystem composed of the two identical non-interacting
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(independent) oscillators in weak interaction with a large environment, so that their
reduced time evolution can be described by a Markovian, completely positive
quantum dynamical semigroup.

If tΦ  is the dynamical semigroup describing the time evolution of the open
quantum system in the Heisenberg picture, then the master equation is given for an
operator A as follows [7, 8]:

( )† †( ) 1( ) ( ) ( )
2

t
t t j t jj j

j

d A i H A V A V V A V
dt

Φ ⎡ ⎤⎡ ⎤ ⎡ ⎤= , Φ + Φ , + , Φ .⎣ ⎦ ⎣ ⎦ ⎣ ⎦∑ (1)

Here, H denotes the Hamiltonian of the open quantum system and Vj are operators
defined on the Hilbert space of H. These operators represent the interaction of the
open system with the environment and can be chosen freely. Being interested in the
set of Gaussian states, we introduce those quantum dynamical semigroups that
preserve that set. Therefore H is taken to be a polynomial of second degree in the
coordinates x, y and momenta px, py of the two quantum oscillators and Vj, 

†
jV  are

taken polynomials of only first degree in these canonical observables. Then in the
linear space spanned by the coordinates and momenta there exist only four linearly
independent operators 1 2 3 4jV = , , ,  [9]:

j xj x yj y xj yjV a p a p b x b y= + + + , (2)

where xj yj xj yja a b b, , , ∈C  and

†
xj x yj y xj yjjV a p a p b x b y∗ ∗ ∗ ∗= + + + , (3)

where * denotes the complex conjugation.
The Hamiltonian H of the two uncoupled identical bosonic oscillators of

mass m and frequency ω is chosen of the form

2
2 2 2 21 ( ) ( )

2 2x y
mH p p x y

m
ω= + + + . (4)

The fact that tΦ  is a dynamical semigroup implies the positivity of the
following matrix formed by the scalar products of the four vectors ax, bx, ay, by:

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )1 .
2 ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

x x x x x y x y

x x x x x y x y

y x y x y y y y

y x y x y y y y

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

a a a b a a a b
b a b b b a b b
a a a b a a a b
b a b b b a b b

(5)

For simplicity we take this matrix of the following form, where all coefficients
D..  and λ are real quantities:
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2

2
.

2

2

x y

x x x x x y

x y

y y yx y y

xx xyxp xp

xp p p yp p p

xy yyyp yp

xp p pp p yp

D D i D D

D i D D D

D D D D i

D D D i D

− − λ/ −⎛ ⎞
⎜ ⎟
− + λ/ −⎜ ⎟
⎜ ⎟

− − − λ/⎜ ⎟
⎜ ⎟
⎜ ⎟− − + λ/⎝ ⎠

(6)

It follows that the principal minors of this matrix are positive or zero. From the
Cauchy-Schwarz inequality the following relations for the coefficients defined in
Eq. (6) hold (from now on we put, for simplicity, 1) :=

2
2 2 20 0

4x x y yx y
xx yy xy xx p p xx p pxp xpD D D D D D D D Dλ− ≥ , − ≥ , − ≥ , (7)

2
2 2 20 0

4x x y y x x y yx y x y
yy p p yy p p p p p pyp yp p pD D D D D D D D Dλ− ≥ , − ≥ , − ≥ . (8)

These inequalities are constraints imposed on the phenomenological constants by the
fact that tΦ  is a dynamical semigroup.

The matrix of the coefficients (6) can be conveniently written as

1 3
†
3 2

,
C C

C C

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

(9)

in terms of 2 × 2 matrices †
1 1 ,C C=  †

2 2C C=  and C3. This decomposition has a
direct physical interpretation: the elements containing the diagonal contributions
C1 and C2 represent diffusion and dissipation coefficients corresponding to the
first, respectively the second, system in absence of the other, while the elements in
C3 represent environment generated couplings between the two, initially
independent, oscillators.

The variance and covariance of self-adjoint operators A1 and A2 can be
written with the density operator ρ, describing the initial state of the quantum
system, as follows:

1 2 1 2 2 1
1( ) Tr( ( ))
2A A tt A A A Aσ = ρΦ + . (10)

We introduce the following 4 × 4 covariance matrix:

( ) .

x y

x x x x x y

x y

y x y y y y

xx xyxp xp

xp p p yp p p

xy yyyp yp

xp p p yp p p

t

σ σ σ σ⎛ ⎞
⎜ ⎟
σ σ σ σ⎜ ⎟
⎜ ⎟σ =
σ σ σ σ⎜ ⎟

⎜ ⎟
⎜ ⎟σ σ σ σ⎝ ⎠

(11)
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By direct calculation we obtain [9]:

T 2d Y Y D
dt
σ = σ + σ + , (12)

where

2

2

1 0 0

0 0
,

0 0 1

0 0

m

m
Y

m

m

−λ /⎛ ⎞
⎜ ⎟− ω −λ⎜ ⎟=
⎜ ⎟−λ /
⎜ ⎟

− ω −λ⎝ ⎠

(13)

D is the matrix of the diffusion coefficients

x y

x x x x x y

x y

y x y y y y

xx xyxp xp

xp p p yp p p

xy yyyp yp

xp p p yp p p

D D D D

D D D D
D

D D D D

D D D D

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

(14)

and YT is the transposed matrix of Y. The time-dependent solution of Eq. (12) is
given by [9]

T( ) ( )( (0) ( )) ( ) ( )t M t M tσ = σ − σ ∞ + σ ∞ , (15)

where ( ) exp( )M t tY= .  The matrix M(t) has to fulfil the condition
lim ( ) 0t M t→∞ = .  In order that this limit exists, Y must only have eigenvalues with
negative real parts. The values at infinity are obtained from the equation [9]

( ) ( ) 2TY Y Dσ ∞ + σ ∞ = − . (16)

3. COVARIANCE  MATRIX

The two-mode Gaussian state is entirely specified by its covariance matrix σ
(11), which is a real, symmetric and positive matrix with the following block
structure:

T

A C

C B
⎛ ⎞

σ = ,⎜ ⎟
⎝ ⎠

(17)

where A, B and C are 2 × 2 matrices. Their entries are correlations of the canonical
operators x, y, px, py, A and B denote the symmetric covariance matrices for the
individual reduced one-mode states, while the matrix C contains the cross-



1108 A. Isar 6

correlations between modes. The entries of the covariance matrix depend on Y and
D and can be calculated from Eq. (16). To simplify further the calculations, we
shall consider environments for which the two diagonal submatrices in Eq. (9) are
equal: C1 = C2, so that Dxx = Dyy, x yxp ypD D= ,  

x x y yp p p pD D= .  In addition, in the

matrix C3 we take 
y xxp ypD D= .  Then both unimodal covariance matrices are equal,

A = B and the entanglement matrix C is symmetric. With the chosen coefficients,
we obtain the following elements of the asymptotic entanglement matrix C:

2 2 2

2 2 2

(2 ) 2
( )

2 ( )
y x yxy xp p p

xy

m D m D D

m

λ + ω + λ +
σ ∞ = ,

λ λ + ω
(18)

2 2

2 2

2
( ) ( )

2 ( )
y x y

y x

xy xp p p
xp yp

m D m D D

m

− ω + λ +
σ ∞ = σ ∞ = ,

λ + ω
(19)

2 4 2 2 2

2 2

2 (2 )
( )

2 ( )
y x y

x y

xy xp p p
p p

m D m D Dω − ω λ + λ + ω
σ ∞ = .

λ λ + ω
(20)

The entries of the matrices A and B are:

2 2 2

2 2 2

(2 ) 2
( ) ( )

2 ( )
x x xxx xp p p

xx yy

m D m D D

m

λ + ω + λ +
σ ∞ = σ ∞ = ,

λ λ + ω
(21)

2 2

2 2

2
( ) ( )

2 ( )
x x x

x y

xx xp p p
xp yp

m D m D D

m

− ω + λ +
σ ∞ = σ ∞ = ,

λ + ω
(22)

2 4 2 2 2

2 2

2 (2 )
( ) ( )

2 ( )
x x x

x x y y

xx xp p p
p p p p

m D m D Dω − ω λ + λ + ω
σ ∞ = σ ∞ = .

λ λ + ω
(23)

With these quantities we calculate the determinant of the entanglement
matrix:

( )22 2 2
2 2 2

1 1det 4 ( )
4 ( ) x y x y y

xy p p xy p p xpC m D D D D D
m

⎡ ⎤
= ω + + λ − .⎢ ⎥λ λ + ω ⎣ ⎦

(24)

It is very interesting that the general theory of open quantum systems allows
couplings via the environment between uncoupled oscillators. According to the
definitions of the environment parameters, the diffusion coefficients above can be
different from zero and can simulate an interaction between the uncoupled
oscillators. Indeed, the Gaussian states with detC ≥ 0 are separable states, but for
detC < 0, it may be possible that the asymptotic equilibrium states are entangled, as
it will be shown in the next Section.
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4. ENVIRONMENT  INDUCED  ENTANGLEMENT

On general grounds, one expects that the effects of decoherence, counter-
acting entanglement production, be dominant in the long-time regime, so that no
quantum correlation (no entanglement) is expected to be left at infinity. Never-
theless, there are situations in which the environment allows the presence of
entangled asymptotic equilibrium states. In order to investigate whether an external
environment can actually entangle the two independent systems, we can use the
partial transposition criterion [5, 6]: a state results entangled if and only if the
operation of partial transposition does not preserve its positivity. Simon [6] obtained
the following necessary and sufficient criterion for separability: S < 0, where

( )2 T1 1det det det Tr[ ] (det det )
4 4

S A B C AJCJBJC J A B≡ + − | | − − + (25)

and J is the 2 × 2 symplectic matrix

0 1

1 0
J

⎛ ⎞
= .⎜ ⎟−⎝ ⎠

(26)

In order to analyze the possible persistence of the environment induced
entanglement in the asymptotic long-time regime, we consider the environment
characterized by the following values of its parameters: 2 2

x xxx p pm D Dω = ,

0
xxpD = ,  2 2

x yxy p pm D Dω = .  In this case the Simon expression (25) takes the form:

22 2 2 2 22 2 2 2

2 2 2 2 2 2

( ) 1 4
4 ( )

y y
xxxp xpxx xy

D m D Dm D D
S

⎛ ⎞ ωω −
⎜ ⎟= + − − .
⎜ ⎟λ λ + ω λ λ + ω⎝ ⎠

(27)

For environments characterized by such coefficients that the expression (27) is
negative, the asymptotic final state is entangled. In particular, if Dxy = 0, we obtain
that S < 0, i.e. the asymptotic final state is entangled, for the following range of
values of the coefficient 

yxpD  characterizing the environment:

2 2

1 1
2 2

yxpxx xx
Dm D m Dω ω

− < < + ,
λ λλ + ω

(28)

where the coefficient Dxx satisfies the condition 1 2xxm Dω /λ ≥ / ,  equivalent with
the unimodal uncertainty relation. If the coefficients do not fulfil the inequalities
(28), then S ≥ 0 and therefore the asymptotic final state of the considered bipartite
system is separable.
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5. SUMMARY

In the framework of the theory of open quantum systems, based on
completely positive dynamical semigroups, we investigated the existence of the
quantum entanglement for a subsystem composed of two uncoupled identical
bosonic oscillators interacting with an environment. By using the Peres-Simon
necessary and sufficient condition for separability of two-mode Gaussian states, we
have shown that for certain classes of environments the initial state evolves
asymptotically to an equilibrium state which is entangled, i.e. there exist non-local
quantum correlations for the bipartite states of the considered open system, while
for other values of the coefficients describing the environment, the asymptotic state
is separable. Due to the increasing interest manifested towards the continuous
variables approach [10] to the theory of quantum information, the obtained results,
in particular the possibility of maintaining a bipartite entanglement in a diffusive-
dissipative environment even for asymptotic long times, could be useful for both
phenomenological and experimental applications in the field of quantum infor-
mation processing and communication.
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