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Abstract. An accurate analytic approximation of the energy eigenstates of a quartic
anharmonic oscillator is analyzed in detail and applied to the statistical mechanics of 1D Ginzburg-
Landau systems, using the transfer matrix theory. Applications to the theory of structural and
quantum phase transitions are briefly mentioned.
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1. INTRODUCTION

The Ginzburg-Landau (GL) theory, initially proposed as a phenomenological
approach to superconductivity [1], proved its usefulness in a huge number of
problems. In the quasi-1D physics, it is relevant for structural phase transitions,
uniaxial ferroelectrics, polymers, etc. The simplest form of the GL functional is:
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,

L ddxF a b c
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(1)

where ( )x  is a real field, defined in each point of a physical system of length L.
In the most popular choice, a has a simple temperature dependence:
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MF

Ta a t a t
T

(2)

and the parameters a b, c are positive constants; their expression, as function of
microscopic characteristics of the physical system, can be obtained, at least in
principle, from a microscopic theory. However, in some cases, it is convenient to
consider that a is a simple, structureless constant, rather that the function given by
(1). The parameter 0 is defined as:
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2
0 ,c
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(3)

and can be viewed as a natural length unit. However, some authors define F

taking 0 1  A detailed discussion of various choices for a and 0 will be given in
a separate subsection of the present paper. TMF is the so-called mean-field
transition temperature; it does not correspond to any real phase transition (which
cannot occur in 1D), but is just another parameter of the GL theory. In the same
time, the mean field theory predicts a (spurious) phase transition at t = 1.

As GL theory is mainly an approach to critical phenomena, its success
depends essentially on how the fluctuations are taken into account. A mean-field
treatment predicts incorrect results, like an unphysical phase transition in 1D, or in-
correct critical indices, in higher dimensions. However, Scalapino, Sears and Ferrell
[2] showed that, at least in 1D, this failure is due to an improper treatment of fluc-
tuations. So, the evaluation of the partition function of a physical system as a path
integral of exp F  over all possible ( )x  fields should lead to correct results.

The main technical problem of this approach is that path integrals could be
very difficult to evaluate. The method used by Scalapino, Sears and Ferrell is the
transfer matrix technique, which reduces the evaluation of the path integral of
exp F  to the calculation of the ground state energy of an anharmonic

oscillator:
2 20 2 4
2 2

1 1 .
4 B

dH a b k T
c d

(4)

In fact, the first energy levels of the anharmonic oscillators, E0, E1, E2 give
the free energy and the correlation functions of the 1D system. For instance, the
free energy of the 1D system is:

0

0
.

E
f (5)

For more details about the physics of the problem, the reader is referred to [2].
So, the determination of the first energy levels of the anharmonic oscillator

(4) gives the statistical physics of the 1D system. This is a particular case of a
general theorem of statistical mechanics, asserting that a classical statistical
mechanical system in 1D  dimensions is equivalent to a quantum mechanical
system in D dimensions. Another aspect of this theorem is the fact that, if we start
the study of a classical statistical mechanics problem for a chain of anharmonic
oscillators, with the Hamiltonian

2 2 22 4 0
2 2 4 2

p x mcdx A B duH u x u x
l m dx

(6)
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instead of the GL functional, and we follow the same approach, the transfer
operator equation obtained in this way is almost identical to (4) (see [3], eq. (2) and
(30)). So, the equation (4) is relevant not only for GL systems, but also for the
investigation of microscopic models of structural phase transitions [4].

Recently, a simple method for the calculation of the free energy for a 2D [5]
and 3D [6]array of GL chains with near neighbor interaction, and for a 2D array
with next-near-neighbor interaction [7] have been proposed. For practical
calculations, a clear understanding of the properties of a single anharmonic
oscillator is essential.

The main goal of this paper is to provide a detailed study of the spectrum of
(4), as a basis for the investigation of the behavior of the 1D system. The
applications to the higher dimensional systems will not be explicitly discussed. We
shall use an approach proposed by Hsue and Chern [10], who developed an
analytic approximation for the study of the anharmonic oscillator.

The structure of this paper is the following. In Sec. 2, we shall discuss some
preliminary aspects of the transfer matrix Hamiltonian, which is a quantum
anharmonic oscillator. In Sec. 3, we shall present in detail the Hsue-Chern solution.
In Sec. 4, a quantitative analysis of the validity of the two-level approximation,
very popular in the context of the anharmonic oscillator, is given. In Sec. 5, the
main physical applications of the transfer matrix theory to the statistical physics of
the 1D GL systems are exposed. Explicit expressions for several interesting
quantities, like correlation lengths, are given. The last section is devoted to
conclusions and comments.

2. THE  QUARTIC  ANHARMONIC  OSCILLATOR

In this section we shall discuss some general aspects concerning the
anharmonic Hamiltonian (4). Let us note that it can be written in a simpler form,
with a change of variable x  indeed,

2 2 202 2 4
2 4 2

1 1 12 ,
8 2 2a

d bH a x x
ac a dx

(7)

where we have put:
sign .a a (8)

Imposing the condition that the coefficient of the derivative be 1
2

 we

obtain:
1 202 .

2
c a (9)
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The coefficient of the quartic term is:

3 2 3 20 01 2 1 2
4 4

B MFb k T b
c a c a t (10)

or, replacing a according to (2),

3 20 1 2
3 2 ,
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(11)

where
.MF B MFk T (12)

Another useful parameter is t, defined as:
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2
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2

B MFbk T
t

a
(13)

t “measures the size of temperature region below Tc in which the thermal
energy kTc is sufficient to drive the order parameter to zero, over the mean-field
coherence length” [2]. t is quite similar to the parameter , introduced by
McKenzie [8], eq, (7)) in the context of the GL theory with a complex order
parameter, with the remark that “most of physics” is determined by it. Finally, we
can write:

3 2

3 2
1 .
4 2 1

t t
t

(14)

It is convenient to introduce a reduced Hamiltonian 

0 a
H

c
(15)
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Let us be more specific and define a reduced Hamiltonian 1w  for the “post-

critical” regime, which is characterized by an one-well potential

1 0 1a a t (16)
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d x x
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(17)

and another one, 2 ,w  for the “pre-critical” regime, with a two-well potential:

1 0 1a a t (18)
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2
2 4
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(19)

The quotation marks mean that, in fact, at t = 1, no phase transition occurs in
the 1D system. Such a transition is predicted by the mean field theory, but it is a
spurious one.

The two-well potential

2 41( )
2

V x x x (20)

has two minima, located at mx  with

3 43 4
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x
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(21)

The well depth is:
3 23 2 11 1 2( )

16 4m m
t

V V x
t t

(22)

and the ratio between the well depth and the distance between well bottoms:
3 4

1 2

11 ~ .
2 16

m

m

tV
x t

(23)

Fig. 1 – The two-well potential for several values of t and t. ( 0 9 ),V x t t t = 0.2 line,

0.1 dash, 0.05 dots; ( 0 7 ),V x t t t = 0.2 circle; 0.10 cross; 0.05 box.
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So,

0 if 1m

m
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t

x
(24)

if 0.m

m

V
t

x
(25)

At small temperature, the potential consists of two distant and deep wells,
and at 1,t  it “shrinks”, i.e. the wells become close each other and shallow. This
behavior can be seen in Fig. 1.

Some authors [9] use a different “effective Hamiltonian”, with a mass 1m
and a coefficient of the quadratic term equal to 1 . Our choice is determined by the
fact that it is the natural frame to use the Hsue-Chern approach to the anharmonic
oscillator [10].

3. HSUE-CHERN  APPROACH
TO  THE  QUANTUM  ANHARMONIC  OSCILLATOR

In this section, we shall expose the Hsue-Chern solution of the quartic
oscillator [10]. Let us introduce the second quantization formalism, putting:

2 2
x ip x ip

a a (26)

.
2 2

a a a ax p i (27)

The effective Hamiltonians can be written as:

4

1
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2 4w

a a
a a (28)

4
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2 4w

a a
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The main point of the Hsue-Chern approach is to notice that if we define the
state  as

2
2 0t ae (30)

then:

.a ta (31)
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Consequently:
0,a ta (32)

and  represents the vacuum state for the boson operators b, b+:

2 2
.

1 1
a ta a tab b

t t
(33)

Using the identities (the colons mean normal ordering)
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4 4 2
6 3,a a a a a a

and reversing (33)
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we find easily that:
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So, the Hamiltonians 1 2w w  can be expressed in terms of b, b+ as

follows:
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(35)

where we have put:
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22
0
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2 4 11w
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Introducing the variable  through the relation:

1 1
1 1

t t
t

(37)

the parameter 0
1w  becomes:

0
1 2

1 3 1 .
4 4 4w (38)

We shall determine the value of  (or t) imposing the minimum condition:

0
1 0.wd

d
(39)

This gives the following equation:
3 6 0. (40)

The coefficient of the term 2 2b b  in (50) is:

2
3

2 2
3 1 1 6 0.
2 11 4

t t
tt

This is an essential simplification. It means that operators b, b+ correspond to
normal modes, and is a general request for the Hartree approximation. Finally, we
obtain:

40
1 1 2

1
4w w b b b b (41)

2
0
1

3 1 1 0 1
8 aw a t (42)

with  – a root of eq. (55). Similarly, we obtain:

40
2 2

1 1
24w w b b b b (43)

2
0
2

3 1 1 0 1
8 aw a t (44)

with  – a root of the equation
3 6 0. (45)

It is important to notice that the operators b, b+, entering in 1w 2w  are

different. Formally, they have the same definition (42), but the parameter t  has
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different values in the “pre-critical” and “post-critical” regime. Indeed, 1
1

t

with  – a root of eq. (55) for 1w, respectively (61), for 2w.
The ground state energy of the Hamiltonian (3) is:

200 3
1

3 1 6 0 1 0 1,
8 aw

a
E a t

c
(46)

200 3
2

3 1 6 0 1 0 1.
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a
E a t

c
(47)

The cubic equation can be written in a unitary way as:

3 6 0.a (48)
Noting that

0 1MF
a

t t
c

the ground state energy of (3) can be written in a compact form as:

2
0

0
3

1 1
8

a
MF MFE t t E t t (49)

For the evaluation of 2  we shall need the derivative:

0 0 1 3 3 .
28

a a
a

E a
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(50)

It is more convenient to express 
a

 through  which can be evaluated

using the cubic equation. We have:

0
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3 9 1 6 ,
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E
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so (57) becomes:

0 0
2

1 3 18
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E
a a c

(52)

or, using again the cubic equation satisfied by ,

0 02 1 1 1 .
44 1

MFE t
a aa c t

(53)
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3.1. THE  SOLUTIONS  OF  THE  CUBIC  EQUATION

3.1.1. Preliminary discussion of limiting cases

Let us firstly discuss two limiting cases, 0  and  of the cubic
equation. For 0  it becomes:

3 0a (54)
so its roots are:

0, (55)
and

2 .a (56)

The second relation gives real roots only for 1a  (the “supra-critical”
case). The result 0  can by interpreted as follows: the equation has a root which
tends to 0 when  tends to 0.

If
3 6 (57)

so the only real root of (45) behaves as

1 3~ 6 . (58)

3.2.2. The roots of the equation

We shall use the notations from [11] for the discriminant of the cubic
equation (45):

3 2 29
27

aq r (59)

In Fig. 2 we can see the domain where the discriminant is positive, so the
equation has one real root, or negative, so the equation has three real roots
(however, only one root will be positive). These domains are separated by the zero
of the function , let us call it t . The values of the root t , for t = 0.2; 0.1; 0.05
are 1.2941; 1.1347; 1.0645, respectively. The point t = 1, where the discriminant is
singular, is also important. In fact, we can identify a “subcritical” domain,
0 1t  a “near-supercritical”, 1 t t  and a “far-supercritical” one, t t  In
the “subcritical” and “near-supercritical” domains, the roots are given by

1 3 1 3
2 23 9 3 9 ,

27 27
a a (60)

and in the “far-supercritical” one, by
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2 1cos arccos9 3 .
33

(61)

Our main interest will be focused on “critical” ~1t  or low ~ 0t  tempe-
ratures, so we shall pay little attention to the “far-supercritical” regime. However, it
can be important in the study of quantum phase transitions of the Hamiltonian (4).

Fig. 2 – The discriminant of the eq. (45), for various values of t. (t, t), t = 0.2 line;
0.1 dash; 0.05; dots.

We shall discuss now, in detail, the form of the roots, for the “subcritical”
1a  and “near-supercritical” 1a  regimes. For large values of , which

correspond to “critical” ~1t  temperatures, it is possible to discuss together the

both cases 1a

3.1.3. The case of “critical” temperatures

For ~1t  is large, and the discriminant

2
2 29 3 1 3 1

27 27 9 3 9
a a a (62)

is real, irrespective of the value of a. Therefore, the only real root,
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1 3 1 3

1 3
2 23 1 1 1 1

3 9 3 9
a a (63)

can be written as a series expansion:

21 3 2 3 2 8 3 4
5 8

1 1 26 1 6 6 6 6
3 81 3 3
a

a (64)

1 3 2 3 4 3 2
4

10 3 4
6 8

1 1 1 26 1 6 6 6
3 9 3

2 76 6 .
3 3

a a

a

(65)

For the evaluation of the validity of the two level approximation (see further
on), the following function is important:

2 3 4 3
3 2 3 2

3 3 2 3 2

2 10 3
3 2 3 2

4 3 2 6 3 2

4
3 2

8 3 2

3 1 1 3 1 31
2 3 2 2 9 2 21 1

2 3 2 3
2 2 2 23 31 1

7 3
2 23 1

t t t t
t t

t t t t
t t

t t
t

(66)

3.1.4. The case of small temperatures

This means that 0a , so

1 3 1 3
2 21 13 9 3 9 ,

27 27
(67)

and we have the following series expansions:

2 46 1 4 3 48 3 (68)

2 4 61 1 1 4 3 32 3 320 3
6

(69)
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3.2. THE  GROUND  STATE  ENERGY
OF  THE  REDUCED  HAMILTONIAN

We can compute now the ground state energy of the reduced Hamiltonian:

2

0
3 3 1 .

8 8 8
a a (70)

At small temperatures, therefore when 1a

3 5
0

1 1 6 4 3 224 3 .
4 12

(71)

It is easy to verify that the terms explicitly written in (71) provides an
excellent approximation, with an error less than 10–3 for t ~ 0.9, 0 1t

At “critical” temperatures,  is large, and we have, in both cases 1a :

1 3
0

2 3 4 3 2

8 3 4 14 3
4 7 8

1 6
8

1 23 2 6 6 6
3 27

1 2 76 6 6
3 3 3

a a

a

(72)

Fig. 3 – The ground state energy of the anharmonic oscillator in function of the “reduced
temperature” .
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With the notation:

2 3
2 1t
t t

(73)

which can be interpreted as a “reduced temperature”, we have:

1 3 2 3 1 3 2 33 21 2 2 3 4
0 3 6 7

2 34
5 6 7

13

3 3 2 2 2 2 2 2 21
8 2 3 3 3 33 3 3

2 26 0214 10 7 .
33

(74)

3.3. THE  ENERGY  OF  FIRST  EXCITED  LEVELS

The energy of first excited levels is given by [12]:

0 2
3 1 .

2n n n n (75)

The spacing of these levels is important for the validity of the two level
approximation; it works if the levels 0 1  are close together, and 2  is more
distant. So, the ratio

31 0

2 1 3
(76)

is relevant for the accuracy of the “two-level approximation”.

4. THE  VALIDITY  OF  THE  TWO-LEVEL  APPROXIMATION

The two-level approximation is largely used in the study of anharmonic
oscillators. It consists, essentially, in the fact that, if the first two energy levels are
close together, and the third one is quite distant, the physics of the system is
governed by the first two levels. The Hsue-Chern solution allows one to obtain
analytical formulae for the evaluation of the validity of this approximation.

First of all, let us see where is placed the level 0  in the well. For small
values of  (or of t), 0 0  so the level is “inside the well”. It is easy to see that

0

0

1lim .
3t mV

(77)

In the same limit, 0
1

8 1 0 0 2 1 2
3 1~

t
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so the two level approximation becomes an exact approach. The level 0  goes up

in the well ( 0  decreases) and it reaches the top of the well when 0 0  or

1
3

 Using the cubic equation, this corresponds to:

1 311
3 2

tt (78)

So, when the statistical system enters into the critical region, the ground state of the
matrix transfer Hamiltonian tends to “get out of the well”.

As already mentioned, the ratio

1 0

2 1
3

1
31

must be small in order to be able to apply properly the aforementioned appro-
ximation.

At low temperatures – or, equivalently, at small values of  – we have

6  so 3 2
3 1

108
 and

1 0 2 2

2 1
108 ~ t (79)

At “critical” temperatures, or large values of 3
3 1

2
 and

1 0

2 1

2
3

(80)

so the approximation is poor, but still not unusable.
For instance, let us ask that

1 0

2 1
3

1 1
3 101

(81)

Using again the cubic equation, we find that the condition (81) corresponds
to the following value of t:

1
2
tt (82)

So, when t is in the middle of the “pre-critical” domain, the two level
approximation is still good.
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5. APPLICATIONS  TO  THE  STATISTICAL  PHYSICS
OF  1D  SYSTEMS

5.1. CORRELATION  LENGTHS

With the definitions of [2], the correlation lengths 1, 2 of the order
parameter-order parameter and, respectively, intensity-intensity correlation functions
are

1 2 0
1 2 0

1 1 1 .
B

E E
k T

(83)

With (46, 47, 75), we get for the order parameter-order parameter correlation
length:

1 0

1 1 1 .t (84)

At small t,
3

3 2
36 ,
2 2 1

t t
t

(85)

consequently:
3

1 0

1 3 1 0.
2 2 1

t t t t
t

(86)

At t ~ 1,
1 2 1 2 1 31 3 36

2 2 1
t t

t
(87)

so:
1 2 1 2

1 3

1 0

1 3 1 .
2 2

t t (88)

1

1  remains non-zero at any finite temperature, as expected for a 1D system. At

1t
1

1  has just an inflexion point; it separates an interval (t > 1) with a slow

decrease of 
1

1 ,  from an interval (t < 1) with a more pronounced decrease of 
1

1 ,

when t descreases; at the end of this latter interval, 
1

1 0

The intensity-intensity correlation length is:

3 3
2 1 0

1 2 3 2 31 1 1t (89)
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Fig. 4 – The inverse correlation length for the order parameter – order parameter correlation

function, eq. (84). 1 20

1
( ) 1 5565y t t t t =0.2 line; 0.1 dash; 0.05 dots.

or

3
2 0

1 2 31 1t (90)

At small t,

3 2 2
3 3 3 11 6 6

1236
(91)

and because ~ t  the inverse of the correlation length diverges at 0t  like 1 t

At 1,t

3
3 1~

2
(92)

so 2 behaves similar to 1. However, at t slightly smaller than 1, 2 has a
maximum, which could be interpreted as the only indication of the fact that t = 1 is
the mean field critical point.

We obtain, at least qualitatively, the results of [2]. Quantitatively, it should be
a difference about our results and [2], due to the fact that the temperature
dependence of the parameters in (1) differs slightly of that usen in [2].
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5.2. AVERAGE  VALUE  OF  THE  SQUARED  ORDER  PARAMETER

It is easy to see, from (54), that the expectation value of the field intensity
can be written as:

2
1~ .t (93)

At “critical” temperatures:

1 3 1 2 2 32 2 3

4 3 2 10 3 4
4 6 8

1 2 2 11 6
4 3 3

1 2 2 76 6 6 6
9 3 3 3

MF
a

a a

t
a t

(94)

or
1 3 1 2

2 2 3

2 3
2 2

2 3 2 3 2 3

5 6
4 4

2 3 2 3

34
2 2

2 1 2 1 2 11 0 25438 6 4710 10 1 0974 10

2 1 2 17 1012 10 2 1075 10

MF

t a t

t t t
t t tt t t

t t
t tt t

(95)

Fig. 5 – The “normalized” average field intensity in the “critical” region, for various values

of t. 1 3 1 22 4 3 2 2 MFy t a t =0.2 line; 0.1 dash; 0.05 dots.
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The behavior of the squared order parameter is specially relevant for what
happens in a 1D material, near the mean field transition temperature: instead of a
neat phase transition, a smooth passage from a regime where the order parameter is
sensibly non-zero and is growing while lowering of temperature, to a regime where
it is small and becomes smaller for larger temperatures. This behavior is more
pronounced for smaller values of t.

Contrary to E0, , 1 and 2, which can be expressed as functions of , or of

the “reduced temperature” , 2  does not enjoy this property: it depends on both

t and t. However, it can be put in a form somewhat simpler than (95), i.e.

1 3 1 2 2 3 4 3
2 2 3 2

2 10 3 4
3 5 6

4 6 8

1 2 2 1 2 1 21
4 3 3 3 9 3

2 2 2 2 7 2
3 3 33 3 3

MF t
a t

(96)

5.3. CHOICES  OF  THE  TRANSFER  HAMILTONIAN  PARAMETERS
USED  IN  LITERATURE

In the physical applications of the transfer matrix operators, as developed by
Scalapino and co-workers [13, 14], there are several choices of the Ginzburg-
Landau functional. It is useful to take in account these differences in order to be
able to compare properly the results of various theories. We shall shortly discuss
this issue here.

In [2], “the natural length unit” 0 is used, but in [13], the authors put 0 = 1.
In [2], the temperature dependence of the mass of the anharmonic oscillator is
neglected, making the choice T = Tc. This choice is based on the fact that the
“Landau form” of the coefficient a, (2), can be used only the point t = 1. An
advantage of this convention is the fact that the “reduced temperature” has a very
simple form. In [13], the transfer matrix Hamiltonian has an extra factor . In all
these papers, a has the “Landau form”, eq. (2), but in the standard statistical
mechanics approach [3, 4], a is just a number. Of course, a defined by (2) and
a = const will give different physical behaviors. To the contrary, all the other
choices produce essentially the same physics. The results obtained in this paper can
be easily adapted to any of the aforementioned situations.

6. CONCLUSIONS

The present paper provides a detailed analysis of a quite accurate analytical
approximation of the quantum quartic oscillator. These results are applied to the
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statistical mechanics of a 1D Ginzburg-Landau system. Simple and compact
expressions for several physical quantities, like correlation lengths, or average field
intensity, are obtained. Their behavior is analyzed in detail in the “critical” region,
i.e., near the zero of the Ginzburg-Landau coefficient a. In fact, no phase transition
occurs, as expected for a 1D system, but the averaged field intensity strongly
decreases, remaining however at a non-zero value, while temperature increases.
The validity of the two-level approximation is analyzed quantitatively. Our
formulae give an analytic form to the numeric results obtained in the well-known
paper of Scalapino, Sears and Ferrell [2].

As the spectrum of the single anharmonic oscillator is of central importance
for the statistical mechanics of the higher-dimensional Ginzburg-Landau systems,
our results are relevant for the 2- and 3D physics too; the same remark is valid for
the standard statistical mechanical approach of structural phase transitions, where
the starting point is the atomic Hamiltonian, rather than a Ginzburg-Landau
functional, obtained, in principle, by coarse-graining this Hamiltonian. Our results
are also relevant for the study of quantum phase transitions in low dimensional
systems of quantum anharmonic oscillators.
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