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Abstract. The possibility is investigated of controlling the electric flow through a ferromagnet-
superconductor junction by spin polarization. The ferromagnetic and superconducting properties are
briefly reviewed and the formation of a perfect contact at the ferromagnet-superconductor junction is
characterized. Reasons are given that such a contact may support a ballistic regime of transport for
the ferromagnetic sample while the superconducting sample sustains a diffusive transport. For such a
ballistic regime it is shown that the conductivity of the junction increases monotonically with
increasing magnetization, including both positive or negative jumps, giving thus the possibility of
controlling the flow through magnetization in a transistor-like effect.
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1. INTRODUCTION

In the never-ending quest for miniaturization the modern electronic devices
must be as small as possible in size, while supporting at the same time voltages and
electric flows comparable with those at the macroscopic scale. Unfortunately, this
trend towards miniaturization raises a problem, because usually conductors
diminish the electric resistance while reducing size. This is why semiconductors
and potential barriers like metal oxides at metal-metal or metal-semiconductor
junctions are preferrable for such miniatural electronic devices, or inversion layers
at semiconducting junctions. Superconductors exhibit natural potential barriers at
such junctions, hence the interest in investigating their properties in such miniatural
electronic devices.

The thermal and electric transport performed by the electron quasi-particles
at a conductor-superconductor junction exhibits certain peculiarities in comparison
with the transport between two normal conductors, as a consequence of the
presence of the superconducting gap in the quasi-particle spectrum. The quasi-



328 Oana Ancuta Dobrescu, L. C. Cune, M. Apostol 2

particles are reflected by the superconducting gap, such that a temperature drop
occurs at the junction as well as a corresponding counter-flow of heat and charge.
This is known as the Andreev reflection; its resemblance with Seebeck and Peltier
effects is striking. A similar behaviour is present for an opposite thermal flow
passing through a superconductor-conductor junction. The passage of an electric
flow through a conductor-superconductor junction is accompanied by a voltage
drop at the junction and a reflected electric flow propagating backward into the
conductor; an opposite electric flow passing from the superconductor into the
conductor implies a similar voltage drop.

The passage of the electron quasi-particles in such thermal or electric flows
into, or from, a superconductor is thought to be affected by the superconducting
correlations between the quasi-particles spins. Indeed, usually, a superconductor
favours the antiparallel spins, hence the idea that the corresponding jumps into
temperature or voltage, as well as the thermal or electric flows themselves, might
be controlled, in principle, by a spin polarization. Such a spin polarization occurs
naturally into a ferromagnet, hence the investigation of the Andreev reflection at a
ferromagnet-superconductor junction; varying the magnetization, by a temperature
change slightly below the magnetic critical temperature, and much below the
superconducting critical temperature, one might control the flows into, or from, a
superconductor, much the same as in a transistor, the magnetization playing the
role of a gate voltage; this would be a “field-induced superconducting transistor”,
the transistor effect being induced by the spin-polarization field; all the same, it
would be a new device in the spintronics field. It is shown herein that the
dependence of the flow on the magnetization resides in the conduction of the
ferromagnetic sample, the control being effective in the ballistic regime of
transport for the ferromagnetic sample and the diffusive transport regime for the
superconducting sample.

One of the major issues in transport phenomena at a junction is the role of the
interface. Usually, a more or less extended contact develops at an interface, due to
the mutual atomic diffusion of the solids into each other. For an extended contact a
“third solid” appears in-between the two partners of the junction, with its own
contribution to the transport coefficients; however, new junctions can be defined
between the original solids and the “third” one, which, now, are almost perfect
contacts. The role of such an ideal, perfect contact is therefore essential in
describing a junction. It gives rise to an ideal Kapitza resistance. Except for this
additional, small contribution, the transport is carried through such a junction as for
almost equal Fermi levels. In addition, certain matching conditions must be
fulfilled at the junction, which imposes certain limitations upon a practical
realization of the effect described herein. The matching conditions are possible for
an extended contact, due to the slow spatial variations along it; however, an
extended contact may diminish the efficiency of the effect by the intervening
“third” solid. The presence of an additional potential barrier at the ferromagnet-
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superconductor is not excluded for this effect, the matching conditions being also
fulfilled in this case, though it contributes its own resistance.

2. FERROMAGNET

We adopt a Fermi liquid picture for the charge carriers in the ferromagnet;1

the charge carriers are assumed to be electrons, with an isotropic single-particle
energy spectrum ( )k  labelled by the wavevector k in the normal (non-

ferromagnetic) state; their number is given by 3 23 ,FN Vk  where kF denotes the
Fermi wavevector and V is the volume of the sample; the quasi-particles have a
Fermi velocity

Fn k k Fv k k m (1)

where m* is their effective mass (and  is Planck’s constant); the Fermi level is
defined by ( )n Fk  (which defines the Fermi surface by fixing n from the
number of particles). The function ( )k  can be derived, within certain limits, from
the quasi-classical description of matter aggregation,2 including the so-called
quantum corrections which give discrete energy levels or energy bands from an
original quasi-free-particle picture for the electrons; in general, the label k may not

Fig. 1 – Spectrum of ferromagnetic quasi-particles.

1 M. Apostol, The Electron Liquid, apoma, MB (2000) (a).
2 L. C. Cune and M. Apostol, Metallic Binding, apoma, MB (2000).
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be a wavevector, but we focus here mainly on conducting solids where k is a
wavevector (or so-called a pseudo-wavevector, for crystalline solids); however, the
knowledge of the function ( )k  is not very useful (leaving aside that its knowledge
has also an inherent uncertainty), except for its derivative at the Fermi surface
which is related to the quasi-particle velocity according to (1); it is also worth
noting that the second-order term in the k-expansion of ( )k  at the Fermi surface is
uncertain due to the interaction effects, and it controls in fact the quasi-particles
lifetime.

Below a critical temperature Tm the ferromagnetic state begins to set up; it is
characterized by a temperature-dependent gap m in the single-particle energy
spectrum, which reads now

1

2

( ) 2 ( ),

( ) 2 ( ),
m

m

k

k

k
k

(2)

as corresponding to spin up (label 1 ) and spin down (label 2 ), respectively. Such a
ferromagnetic energy spectrum can be derived within a mean-field theory for
exchange interaction of the Hartree-Fock quasi-particles. The number of electrons
is given now by

3 2 3 2
1 26 6 ,F FN Vk Vk (3)

and the magnetization reads

3 2 3 2
1 2( 6 6 ),B F FM Vk Vk (4)

where 2B e mc  is Bohr’s magneton (with usual notations –e is the electron
charge, m is the electron mass and c denotes the velocity of light).3 It is convenient
to introduce a reduced magnetization defined as Bm M N , which leads to

1 3
1

1 3
2

(1 ) ,

(1 )
F F

F F

k k m

k k m
(5)

for the two Fermi wavevectors in (3) and (4); equations (3) and (4) can also be
recast as

3 2

3 2

( 6 )[(1 ) (1 )]

( 6 )[(1 ) (1 )]
F

B F

N Vk m m

M Vk m m
(6)

obviously, the relative magnetization varies between 0 and 1, 0 < m < 1. In the
ferromagnetic state there are two types of quasi-particles, corresponding to spin up
and spin down, moving with velocities

3 It is assumed that the gyromagnetic factor is slightly renormalized, as usually, so that we
may use the magnetic momentum of the free electrons.
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1 21 2 1 2 1 2 1 2

1 3(1 ) ;

FF k k F

n

v v k k m

v m
(7)

this is the main point through which the dependence on magnetization is
introduced in the thermal or electric flows through the ferromagnet-superconductor
junction,4 together with the m-dependence of the Fermi wavevectors 1 2Fk  given

by (5). The Fermi level of the ferromagnetic state is given by

1 22 ( ) 2 ( );m m F m Fk k (8)
hence,

1 3 1 3( (1 ) ) ( (1 ) );m F Fk m k m (9)

this equation determines the temperature dependence of the magnetization m.
Indeed, the ferromagnetic gap has a typical dependence 1 2

0 (1 )m m mT T  on
temperature T close to Tm; for lower temperatures its temperature slope is
vanishing, as for a typical mean-field theory. Since 1 2Fk  have a slow dependence

on magnetization (except for 1 3
2 (1 )F Fk k m  for m ~ 1), we may use the

expansion
2
3m n Fv k m (10)

for equation (9); similarly, the Fermi level reads

2 212 ( ) ( ),
3m m n n F nv k m O m O m (11)

whence one can see that it does not change appreciably in the ferromagnetic state.
These m-expansions can be used for small values of m; usually, the ferromagnetic
gap m is smaller than (2 3) ,n Fv k  so that the magnetization acquires indeed small
values; however, if m exceeds (2 3) n Fv k  below a certain (low) temperature then
the magnetization stays at unity for vanishing temperatures; there, the expansions
(10) and (11) are not valid anymore. It is also worth noting that the Fermi level n

has a well-known T2-correction, which contributes to m together with the
temperature dependence of the magnetization; however, both these temperature
contributions are small and they may be neglected. Typically, the magnetization m
acquires small values for large values of the product n Fv k  (which may be taken
as a measure of the conduction bandwidth) and, viceversa, it acquires higher values
for small values of ,n Fv k  so that the ferromagnetic gap m is relatively small in

4 Higher-order corrections to the effective mass as due to the interaction effects on the two
ferromagnetic branches of energy levels may be neglected.
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comparison with the Fermi energy (without quantum corrections); this behaviour is
consistent with the exchange character of the magnetic interactions, which affects
mainly the single-electron states close to the Fermi surface, within a certain, well-
determined range.

3. SUPERCONDUCTOR

Let ck be the destruction operator of a quasi-particle state in a normal
conductor; it obeys Heisenberg’s equation

( ) [ ( )]n n Fi c t c ck k kk v k k (12)

or, introducing the field operator ( ) (1 ) iV c e kr
kk

r  for k close to kF,

( )n n F ni t iv k v r (13)

it is worth recalling here that the quasi-particles with the energy levels ( )k  are not
independent particles, except for the vicinity of the Fermi surface where their
lifetime is infinite. In addition they are wavepackets of plane waves with
wavevectors close to each k-wavevector.

Various other elementary excitations can couple to electron quasi-particles;
the effect of such a coupling can be written as an electron-electron effective
(residual) interaction

1 ( ) ( ) ( ) ( ) ( )
2e eH d d gr r r r r r r r (14)

Fig. 2 – Superconducting quasi-particles
spectrum.
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where ,  are spin labels and ( )g r r  is a potential (here chosen as spin-
independent for simplicity); equation (13) reads now

( )

( ) ( ) ( ) ( );

n n F ni t i

d g

v k v r

r r r r r r
(15)

such an interaction may lead to superconductivity, by a macroscopic occupation
( ) ( ) 0r r  of the pair states.5 The pair wavefunction ( ) ( )r r

breaks the gauge symmetry ,ie  as for a phase-coherent off-diagonal long-
range order; actually, the pair wavefunction possesses a crystalline symmetry too,
as well as spin-singlet or -triplet, and time reversal symmetries; for a spin triplet the
orbital symmetry is odd, while for a spin singlet it is even, according to the parity
of the state under space inversion; the s-wave and d-wave symmetries are included
among the latter. Here we assume a -type interaction ( ) ( ),g gr r r r  which

makes the pair wavefunction a spin singlet ( ) ( ) ;r r  we define

( ) ( ) .F g r r  According to its definition ,F F  while F F
by time reversal symmetry; it follows that we may define the superconducting gap
parameter  (> 0) through .F i  In addition, we include the

basic time-dependence ~ ni te  in equation (15), such as the superconducting
gap be time-independent; equation (15) describes then the (first-order) perturbations
to the superconducting state, i.e. its elementary excitations; this amounts to
subtracting nN from the hamiltonian in writing down the equations of motion, as
the number N of the elementary excitations is not conserved; equation (15)
becomes then

( ) ( ) ( )n F ni t i iv k v r r r (16)

in addition we assume a constant ( )r  as for a s-wave pair state,6 which is
typical for an electron-phonon mechanism of superconductivity; equation (16)
leads to

( )

( )
n F

n F

i c t v k k c i c

i c t v k k c i c

k k k

kk k

(17)

for k along vn, which are solved for the well-known superconducting spectrum

5 L. P. Gorkov, ZhETF 34 735 (1958) (Sov. Phys.-JETP 7 505 (1958)).
6 The high-temperature superconducting cuprate oxides seem to possess a d-wave pairing,

arising probably from an electron-lattice interaction with antiferromagnetic fluctuations; see, for
instance, C. C. Tsuei and J. R. Kirtley, Revs. Mod. Phys., 72, 969 (2000).
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2 2 2 2( ) ( )n n Fv k kk (18)

with (the original) ( )~ ,ni tc ek
( ) ,ni tc ek  and 

2 2 2 2( ) ;n Fv k k  the lower branch joints smoothly the rest of the original

energy spectrum, so that the superconducting Fermi level is given by7

s n (19)

It is convenient to measure the wavevectors with respect to the Fermi

wavevector, i.e. 2 2 2 2( ) ,n nv kk  so that the solutions to equation (17)
read

k k

k k

c u b iv b

c u b iv b

k k k

k k k

(20)

where cos ,k ku sin ,k kv  tan ( )k k nE v k kE

2 2 2 2 ,nv k   or

2

2

1 (1 ),
2
1 (1 ),
2

k n k

k n k

u v k E

v v k E
(21)

for the energy branch ( ) ( ) ,n ksgn k Ek  and 2 .k k ku v E  The self-
consistency condition ( ) ( )ig r r  leads to the well-known equation

2

2

tanh
1

22
kF

k

Egk
dk

E
(22)

hence, one may see that interaction must be attractive, i.e. g < 0, in this case; one
obtains the well-known critical temperature

1 ,Dg
c n cT v k e (23)

where 2 22F nD k v  is the density of states (per spin) at the Fermi surface, kc is a
wavevector cutoff,8 and the sign of the interaction has been changed; similarly, one

7 It is worth noting that the formal chemical potential E N  is n; indeed, adding a pair to
the ground-state the energy increases by 2  with respect to the Fermi energy ,s n i.e.,

per particle (a bk -quanta of energy is );  here one can see part of the pairs preserving their original
fermion character, while by their macroscopic occupation they resemble more an ensemble of bosons.

8 The scale energy n cv k  is of the order of the Debye energy D  for a phonon-electron
superconducting interaction.
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obtains the temperature dependence of the gap 1 2
0 (1 )cT T  for

temperatures close to the critical temperature, the gap 0 being given by
1

0 2 .Dg
n cv k e  We may neglect the temperature dependence of the super-

conducting gap and Fermi level (19), assuming the temperature be sufficiently low
for superconductivity be well developed.

4. ANDREEV  REFLECTION

We focus first on the superconducting equations (16) and (17), where we
drop out the label n for the Fermi velocity v, and the superconducting gap  is
assumed constant and positive; in addition we introduce the one-particle
amplitudes

0 1 0 1 (24)

where 1  is an excited one-particle state; the amplitude  is the wavefunction of

a k, -quasi-particle, while  represents a –k, – -quasi-hole in a superconducting
pair; indeed, for instance,

1 10 1 0 0i ie e
V V

k r kr
k kc c (25)

which is the wavefunction of a quasi-particle, and similarly for  for the
superconducting state; the connection of the amplitudes above with the canonical
transform (20) is obvious; equation (16) and its mate read now

( ) ,

( )
F

F

i t i i

i t i i

vk v r
vk v r

(26)

and it is easy to check up the continuity equation

2 2 2 2 0t v r (27)

for each spin orientation ; however,  and, similarly, 
according to its definition, so that equations (26) are the same for each spin
orientation and we may drop out the label  for the superconducting gap and
amplitudes. Equations (26) are Gorkov’s equations;9 they tell that a quasi-particle
in a superconductor acquires two distinct states, one as a quasi-particle, another as
a quasi-hole in a superconducting pair; according to (27), the localization

9 L. P. Gorkov, loc cit.
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probability 2 2  of a quasi-particle in the superconducting state changes in

time according to the divergence of the current 2 2( ).j v  The current j

consists of two contributions, 2v  which flows along the velocity, and 2v
which flows in the opposite direction; this latter contribution is the Andreev
reflection;10 though it comes from holes, and, at first sight it may appear as
enhancing the net flow, one can see that, on the contrary, it is precisely the opposite
case, it diminishes the net flow, because the amplitudes of both quasi-particles and
quasi-holes are less than unity, and the quasi-holes move in the same direction as
the quasi-particles; actually, one can see, by making use of (20), that 2~ ku  and

~ ,k kiu v  and the localization probability goes like 2 ,ku  hence the quasi-particles
truly encounter a potential barrier on their attempt of entering a superconductor,
and, consequently, they are reflected by the superconductor gap, as well as
transmitted through;11 since the superconducting gap is very small in comparison
with the Fermi energy, at sufficiently low temperatures the quasi-particle lifetime is
long enough to allow for the Andreev reflection. It is worth emphasizing that a – k,
– -quasi-hole is equivalent to a k, -quasi-particle propagating backwards in time,
hence the counter-flow associated with  and the Andreev reflection. Also,
equations (26) read

( ) ,

( ) ,
F

F

i i

i i

vk v r
vk v r

(28)

for , ~ ;i te  in addition, we remove the vkF-term in (28) by introducing

,i ie eF Fk r k r (29)
so that (28) become

( ) ,

( )

i i

i i

v r
v r

(30)

for ~ ie kr  one can check up the superconducting spectrum 2 2 2( ) ,vk
while the reduced wavefunctions are given by

1 ,
2

1
2

i

i

C
e

iC
e

kr

kr

vk

vk
(31)

10 A. F. Andreev, ZhETF 46 1823 (1964) (Sov. Phys.-JETP 19 1228 (1964)).
11 A thin conductor-superconductor-conductor sandwich in the ballistic regime would exhibit

interference patterns or pulse-like transport of the flow, near the edge of the gap (irrespectively of
above or below), over a characteristic transmission time (see, for instance, M. Apostol, J. Theor.
Phys. 74 96 (2001)).
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where C  is a constant, 2 2( )vk  and  (otherwise the quasi-
particle does not propagate, and the wavefunctions decay exponentially with the
distance);  is the (reduced) wavefunction of a quasi-particle of momentum k ,
while  represents a quasi-hole of momentum k  and spin – , i.e. a reflected
quasi-hole or a reflected quasi-particle. It is worth noting that the reflected quasi-
holes (or quasi-particles) change the whole wavevector k, not only one component;
this shows that the Andreev reflection is not on the interface, but on the
superconductor as a whole. The wavevectors k in (31) are small in comparison
with the Fermi wavevector kF (where the velocity v is calculated), so that the
wavefunctions ,  vary slowly in space. The constant C  bears temporarily a spin
label, for the sake of generality, though a spin imbalance destroys usually the
superconductivity. Before passing to the ferromagnet-superconductor junction we
note that the transmitted (tunneling) current in the superconductor is

22 2( ) ( )t Cj v v vk (32)

in addition, we also note that (31) are consistent with (20), as expected.
We may pass now to the Andreev reflection in a ferromagnet-superconductor

junction; according to the discussion in the preceding section the Fermi energy in
ferromagnet is taken as being equal to the Fermi energy in superconductor, as for a
perfect contact (and Kapitza’s resistance is neglected); under these circumstances
equations (26) hold for the ferromagnet by simply droping out the
superconducting-gap contribution; obviously, the remaining part depends on the
spin orientation, through both the Fermi velocity and Fermi wavevector; in
addition,  vanishes for the non-superconducting sample, (indeed,  0 in (31)
for  0, as expected), so that we may write down (28) and (30) as

1 2 1 2 1 2 1 2[ ( ) ] 0,F F iv k k v r (33)

where the velocities 1 3
1 2 (1 )mv v  and the Fermi wavevectors

1 3
1 2 (1 )F mk  correspond to spin up and down, respectively, as defined in (7)

and (5), m being the reduced magnetization. In addition, we may note that the term

1 2 1 2( ) (1 3)F F Fvk mv k k  ~ m is small according to the discussion in

section 2, i.e. it is comparable to  with respect to the Fermi energy; consequently
it is immaterial in (33); it follows that the corresponding equations (28) and (30)
for the ferromagnet reduce to

1 2 1 2( ] 0,iv r (34)

whose solution is
1 2

1 2 1 2 ,iA e k r (35)
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for
1 3

1 2 1 2 1 2(1 ) ;mv k v k (36)

one can notice in (36) that for m close to unity the wavevector k2 must acquire
large values (the minimum value of  is ),  which raises problems (a similar
situation would have been encountered in fact if the term 1 2 1 2( )F Fv k k  would

have been large in (33)); actually, several restrictions are put on the quasi-particles
wavevectors by the requirement that the excitation energy be  (restrictions
arising from the geometric orientation with respect to the velocity v, for instance,
in this respect), but the essential one is the wavevectors k be small in comparison
with the Fermi wavevector kF; in this respect the ferromagnet equation (34) looks
more as the asymptotic form of the superconductor equations (30), so that the
Andreev reflection proceeds in the same manner in the opposite direction, i.e., from
the superconductor to the ferromagnet, in particular; in this connection, it is worth
noting that the mutual positions of the two samples need not be specified, the
Andreev reflection proceeding in fact on the asymptotic superconducting
boundaries. Therefore, we must keep in mind that only the first-order spatial
derivative has been kept in Schrodinger’s equation, as corresponding to the
linearized spectrum of the quasi-particles, and, while slowly-varying
wavefunctions ensure, to this accuracy, the continuity of their first-order derivative,
on the contrary, wavefunctions varying rapidly in space do not do that anymore;
this is why, the Andreev reflection must be viewed with caution for magnetization
values close to unity, where large quasi-particles wavevectors are implied; the
lifetime of the quasi-particles is largely diminished in this case at the ferromagnet-
superconductor boundary, and the corresponding transmission coefficient is
diminished; as a consequence, fluxes may not flow anymore through the junction,

Fig. 3 – Andreev reflection.
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giving rise to superheating, for instance, which may damage the junction and
change the problem. However, this is true for spin-down quasi-particle fluid only,
whose density of states diminishes correspondingly for m ~ 1, so that its
contribution to the transmission coefficient is not significant in this region. One
may estimate the occurrence of this anomalous situation from

1 3(1 ) ( ) ~ ,F Fvk m k k  which leads to 1 3(1 ) mm m .
The continuity condition of the wavefunctions  given by (31) and (35) leads to

1 2
1 2 1 ,

2

C
A vk (37)

for a boundary placed arbitrarily at x = 0 (it is worth noting that the components
perpendicular to v of the small wavevectors k are not affected by equations); on the
other hand, the incoming current is given by

2 2 2 21 3 1 3
1 1 2 2 1 2[(1 ) (1 ) ]i A A m A m Aj v v v (38)

making use of (32) we may define the transmission coefficient

2 2
1 2

1 2 2 21 3 1 3
1 2

2 2
1 2
2 21 3 1 3

1 2

( ) ( )
(1 ) (1 )

2( )
1(1 ) (1 )

t t i
C C

w j j j
m A m A

A A

m A m A

vk

vk
vk

(39)

the asymptotic spin amplitudes in the superconductor are equal, i.e. 2 2
1 2A A

(and 2 2
1 2 ),C C  so we obtain

1 3 1 3
4 ,

1(1 ) (1 )
w

m m
vk

vk
(40)

or

01 3 1 3
2 ,

(1 ) (1 )
w w

m m
(41)

where

0 2
1

w vk
vk

(42)

is the transmission coefficient for zero magnetization; within the present
approximation

0 2 2 1w (43)



340 Oana Ancuta Dobrescu, L. C. Cune, M. Apostol 14

One can see that the transmission coefficient in the Andreev reflection
increases slowly with increasing magnetization,

2
0(1 9)w m w (44)

for small values of m. For higher magnetization the Andreev reflection may be
suppressed for the spin-down quasi-particle fluid. It is also worth noting that the
increase in the transmission coefficient with increasing magnetization is due to this
slow, spin-down quasi-particles ( 1 3(1 )m -component in (41)), which go through
mainly by diffraction; their performance is limited for higher magnetization, as
discusssed above; the faster, spin-up quasi-particles ( 1 3(1 )m -component in (41))
are in fact scattered by colliding the potential barrier, thus contributing in the
opposite, decreasing, direction to the transmission coefficient.

5. ELECTRIC  RESISTANCE  OF  THE  JUNCTION

For a voltage drop U

2
3

2
(2 )

dn e U
p (45)

charge is transported per unit volume by a quasi-particle, where n denotes the
Fermi distribution; during the quasi-particles lifetime  the charge flux (charge per
unit area) is

2
3

2 ,
(2 )x

dn e Uv
p (46)

while the total flow (charge per unit area and unit time) is

2
2

3
2 ( )

(2 ) x
e nj d v U xp (47)

from ,j E  where E U x  is the electric field, we obtain the electric
conductivity

2
2

23 F
e k v (48)

In the derivation given above the statistical equilibrium is assumed, as well a
mean-free path much shorter than the length of the sample, a low, uniform electric
field, and a lifetime free of finite-size contributions or other geometric effects.12 It

12 For details see M. Apostol, Transport Theory, apoma, MB (2001).
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is easy to see that for a mean-free path  = v  comparable with the sample length
equation (47) leads to an electric current

2
2

2 ,
3 F

eI k A U (49)

through area A, whence the quanta 2e h  of electric conductance can be inferred.
Actually, in such a ballistic regime of transport the lifetime  does not appear
anymore in (46), and the angle integration gives 1/2 instead of 2/3 in (47); we
obtain therefore

2 2

2 ,
4

Fe k
j U (50)

i.e., an electric resistance
2

2 2
4

F
R

e k
(51)

for unit area. It is worth noting that in a ballistic transport regime the resistance
may depend on the voltage drop, in some cases; indeed, for a normal conductor we

have obviously ,F eUv k  and the current 2 2( 2 ) ( )F Fj ek du v k

2 2 2( 4 ) ,Fe k U  hence the ballistic resistance (51) again; for a superconductor the
current is reduced by ,vk  according to (32), where ;eU  one obtains

1 1 2 2 2 ,sR R e U eU  which is the typical behaviour for the tunneling
resistance in superconductors;13 one may also note that though equilibrium may
suffer in a ballistic transport regime, the quasi-particle lifetime diminishes for

higher voltages. The presence of the 2 2 2eU e U -factor in the
superconducting resistance is very important, because the ballistic resistances are
extremely low; indeed, typical values for R given by (51) are 25 210 m ,R  so
the voltage U has to be very close to the superconducting gap in order to get a
practicable device; it is worth noting that such a reduction factor in the
conductivity comes from the Andreev reflection in the superconductor, which
shows again that the superconductor behaves like a genuine potential barrier; since
it may be difficult to finely tune the voltage precisely just above the
superconducting gap, a convenient reduction in the conductivity may also be
achieved by an additional tunneling barrier interposed between ferromagnet and
superconductor; we note that such a barrier does not change anything essentially in
the Andreev reflection as derived before, it just act like an additional resistance at

13 See, for instance, I. Giaever, loc cit., as well as L. Esaki, Revs. Mod. Phys. 46 237 (1974),
and references therein; a supercurrent may also appear through the tunneling barrier between two
superconductors for zero voltage, as is well-known (B. Josephson, Revs. Mod. Phys. 46 251 (1974)).
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the junction; in particular, the transmission of the quasi-particles through a
potential barrier is instantaneous, preserving their energy and velocity.14 Such
potential barriers are usually made of an oxide layer grown up at the interface,
within a limited depth; oxide layers can perform extended contacts, but a limited
growth produces thin layers with sharp separation interfaces; indeed, the atom
tunneling through such a potential barrier is extremely slow, so that the
characteristic contact length c is irrelevant, the ferromagnet-oxide-superconductor
separation being much sharper this time. Unfortunately, the ballistic transport in
superconductor is a non-equilibrium transport, so the quasi-particle spin-flip in the
superconductor is less likely in this case; consequently, the associated magnetic
mean-field of spin polarization may destroy the superconductivity, and spoil
thereby the consistency of the envisaged device; this is why it still looks preferably
to have a diffusive transport in the superconducting sample. We also note that
precisely for the same reason a reciprocal situation, where the magnetization would
be destroyed by the superconducting correlations of the quasi-particles penetrating
the ferromagnetic sample would not take place, so the ballistic transport is possible
in the feromagnet.

Turning now back to (48) one can see that the electric conductivity of a
ferromagnet does not depend essentially on magnetization; indeed, the dependence
on the magnetization comes through the velocity v and Fermi wavevector kF in

(48), which gives 2 2 2 2
1 1 2 2(1 2)( ) (1 2) (1 1 ) ;F F F Fv k v k vk m m vk  a slow

magnetization dependence may be included in the lifetime, but its contribution is
uncertain. This point is supported by the fact that flows are proportional to density
of states 2~ Fk v  multiplied by velocity v multiplied by mean-free path v  in the

diffusive regime, hence their 3~ Fk  proportionality to density, and the independence
of magnetization.

The electric conductivity corresponding to the tunneling current in a
superconductor can be derived in a similar way; however, the flow involves now
the quantal probability beside the statistical one, i.e. it is given by

2 2 22
3

2 ( )
(2 ) x

e nj d v U x
T

p (52)

where the temperature is so small in comparison with the superconducting gap that
we may use ,Tn e  ,  for the Fermi distribution; the wavefunctions 

and  are those given by (29) and (31) for 2 1C ; one can see that

2 2 2 ( )vk (53)

14 See, for instance, M. Apostol, J. Theor. Phys. 94 96 (2001).
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is much lesser than unity (which corresponds to a normal conductor), as due to the
Andreev reflection. Making use of (52) and (53) one can compute the tunneling
electric conductivity of a superconductor as

22

2

2
2

2

2
3

2 ;
3

F T
s

T
F

k ve d e
T

e k v T e

(54)

the lifetime is not affected too much in the supeconducting state, in comparison to
the lifetime in the normal state, at least for an effective electron-phonon collision
regime; consequently, one may write

2 T
s T e (55)

for the tunneling conductivity of the superconducting state, where  is the electric
conductivity of the normal state. One can note in (55) a drastic reduction in the
electric conductivity, in comparison with the normal state, as a consequence of the
Andreev reflection. In addition, from

e

0

0

,

,

f

s
s

U U
j

l

U
j

l

(56)

for a feromagnet-superconductor junction, where f sl  denote the lengths of the

ferromagnet and superconducting samples, respectively, one obtains the electric
resistance of the junction

j f s s sR l l R R (57)

for unit area, whence one can see that it is independent of magnetization; U0

denotes the voltage drop at the junction. However, the superconducting resistance

s s sR l  is very high in comparison with the normal resistance f sR l . In

particular

2 T
s s sR l R Te (58)

is the additional, large electric resistance due to the Andreev reflection in the
superconductor, similar to the one computed originally for a thermal flow.15

Indeed, the thermal conductivity due to electron quasi-particles can be computed in
a similar way as before, replacing the charge –e with the energy  or ;  above a

15 A. F. Andreev, loc cit.
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certain temperature, but still much below the superconducting gap, the electron
quasi-particles bring the main contribution to heat transport. It is also worth noting
in (56) that the voltage drop is continuous at the junction, but its spatial derivative,
i.e., the electric field, is not.

We turn now the attention to a ferromagnet-superconductor junction where
the ferromagnet is in the ballistic or quasi-ballistic regime. We assume that the
superconducting sample is in the diffusive regime, i.e.,

0
1 2 ,Tj T e U
R

(59)

where 2 2 23 s FR l e k  as given by (54); very likely, the Andreev reduction
factor in (59) and the diffusive factor sl  in R increase sufficiently the
superconducting sample resistance, such as to make the device practicable. Let us
assume that the temperature is sufficiently low and the ferromagnetic sample is
sufficiently thin that the length fl  be much shorter than the mean-free path v

in the normal state of the feromagnet, ;fl  increasing the magnetization the

spin-up electron fluid increases its mean-free path 1 3
1 (1 ) ,m  so that it

transports in the ballistic regime; therefore, we may write down

2 2 2 2
1 2 3

1 0 02 2( ) (1 ) ( ),
8 8

F Fe k e k
j U U m U U (60)

according to the discussion above; the spin-down electron fluid decreases its mean-
free path 1 3

2 (1 )m  on increasing magnetization; up to a threshold

magnetization 31 ( )t fm l  it is still in the ballistic regime, so that

2 2 2 2
2 2 3

2 0 02 2( ) (1 ) ( );
8 8

F Fe k e k
j U U m U U (61)

it follows

2 2
2 3 2 3

1 2 02 [(1 ) (1 ) ]( ),
8

Fe k
j j j m m U U (62)

which means a resistance

2 3 2 3
2

(1 ) (1 )f tR R m m
m m

(63)

where 2 2 24 FR e k  as given above; for m > mt the man-free path 2 gets shorter
than the length fl  of the sample and the spin-down fluid flows in the diffusive

regime; in this case
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2 22 02
2 2 2 02 2

2 2

0 02 1 3

(1 )( )
6 6

2 1 1(1 )( ) ( );
36 (1 )

F
F

f f

F

f t

U U e ke vj k v m U U
l l

e k mm U U U U
l R m

(64)

it follows the resistance

2 3
1 3

2
14(1 )

3 (1 )

f t

t

R R m m
mm

m

(65)

for the ferromagnetic sample; the two resistances given by (63) and (65) are
discontinuous at the threshold magnetization ,tm m  as a consequence of the
distinct numerical factors in the ballistic and diffusive conductivities; this negative
jump in the resistance is in fact round-off (by geometric effects, for instance), and
it may be viewed as a negative resistance for magnetization values close to
magnetization threshold; apart from this jump the resistance Rf exhibits a
monotonous increase with magnetization over the entire range 0 < m < 1; in
addition, as discussed in the previous section, the Andreev reflection may greatly
be diminished for values of the magnetization m  close to unity for the spin-down
quasi-particle fluid (in the sense that the corresponding electric flow may
drastically be reduced), but its contribution to the conductivity is small for m ~ 1.
We note two limiting behaviours for Rf, namely 2(1 9)fR R m  for m ~ 0 (which

is similar to the behaviour of the transmission coefficient w as given by (44)), and
1 3 4 3 1 31~ 2 1 [2 (1 ) 1]( 1)

3f tR R m m  for m ~ 1. We note also that the

resistance of the junction is ,j f sR R R  and it depends on magnetization through

Rf ; increasing the magnetization the electric flow through the junction may be
diminished, as one can see from (63) and (65), or, it may be increased in the region
of the jump, just as for a transistor; this is the effect we are investigating herein;
one can notice that the controlling effect comes entirely from the ferromagnetic
sample, whose magnetization acts like a “gate voltage” for the transistor; in
principle, the effect holds for a ferromagnetic-normal conductor junction too, only
the Andreev reduction factor being absent now, the length of the normal sample
must be large, which is not convenient; the Andreev reflection in the
superconducting sample reduces the electric flow very much, in comparison with a
normal conductor, so that it may effectively be controlled by the magnetization of
the ferromagnetic sample. It is also worth noting that magnetization may be
changed by varying the temperature of the ferromagnetic sample, and one may
worry about changing on this occasion the lifetime  too, which was assumed
constant above; however, the change in the lifetime is much smaller than the change
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Fig. 4 – Reduced resistance of a ferromagnetic sample vs magnetization in
the ballistic (solid line) and quasi-ballistic (dotted line) regime for two

arbitrary values of the threshold magnetization mt..

in the magnetization, or the change in the superconducting gap, for temperatures
close to the magnetic critical temperature Tm, but much lower than the
superconducting critical temperature Tc. For mean-free paths longer than the width
of the sample, one may worry about fluctuations that are inherent to such a quasi-
two-dimensional ensemble; however, the fluctuations time for a quasi-particle goes
like 1 2 3 2T , and one can see that it is much shorter than the lifetime 2~ T
and the equilibrium time ,T  which means that fluctuations, both quantum and
statistical, do not impede upon the ballistic transport.16

For 1 32fl  there exists another threshold 3( ) 1t fm l  below

which both spin-up and spin-down fluids flow diffusively, while for m > mt the
spin-up fluid flows ballistically; the ferromagnetic resistance is then given by

1 33 (1 )
4f t tR R m m m (66)

in the former case, and

1 3
1 3 2 33

4

3 2(1 )
4 1 (1 ) (1 )f t t

t
R R m m m

m m m
(67)

in the latter, where R is the same as above; for small values of the magnetization
the resistance is constant (and close to the value R corresponding to ),fl  while

16 See, for instance, M. Apostol, Transport Theory, apoma, MB (2001).
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for higher values of magnetization it increases up to the same value 1 32 R  as
above; at the threshold it has a positive jump, in contrast to the case fl , where

the jump is negative. The reduced ferromagnetic resistance is shown in Fig. 4 for
the two cases.

6. CONCLUDING  REMARKS

The physical conditions of the effect described herein require certain
limitations, connected especially with the matching conditions of the Andreev
reflection at the ferromagnet-superconductor junction. We summarize here briefly
the main physical picture of the effect. Suppose two distinct solids in contact,
sharing an interface. If the two solids are very dissimilar they diffuse largely into
one another, and an extended contact is built up at the interface. Such a contact acts
like a “third solid” in-between the former two, with its own properties. Along such
an extended contact the physical properties vary slowly, and the effect would be
possible in principle, with a limited efficiency however, especially due to the
limitations such an extended contact would put on the ballistic regime of transport
in the ferromagnetic sample. New junctions may be defined between each of the
two original solids and the third one, which exhibit perfect contacts; hence, the
essential role played by perfect contacts in this effect. Indeed, if the two solids are
similar they diffuse into each other over a rather limited scale length c, which
contributes to the quasi-particle lifetime. Such a contribution corresponds in fact to
the slight difference in the Fermi energies, which brings an uncertainty in the
quasi-particles energy, leading to a small Kapitza’s resistance. Otherwise, the
Fermi energies may be taken the same in the two solids. In particular, typical
products like 2

Fvk  which enter transport coefficients in the diffusive regime aqcuire
similar values, as do the quasi-particle lifetimes. Both the ferromagnetic and
superconducting gap do not change appreciably this picture. In particular, the
quasi-particle lifetime is similar with the one in normal state, as the residual
interactions are effective for the ground-states of such condensed phases, while
preserving the same effect for the elementary excitations as in the normal state. In
the diffusive regime the transport through a ferromagnet-superconductor junction is
not affected by spin polarization. On the contrary, it depends on magnetization in
the ballistic regime of transport, through the conductivity of the ferromagnetic
sample. However, the conductivities in the ballistic regime are high, so that, in
order to be controllable, the transport needs a higher resistance in this regime. This
is provided by the Andreev reflection in the superconductor in the diffusive regime.
A ballistic transport regime for the superconducting sample may prove to be
inconsistent. The ballistic regime is favoured by a perfect contact and low
temperatures, such as the quasi-particle mean-free path  be longer than, or
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comparable with the length of the sample, and, of course much longer than the
characteristic contact length c. The change in magnetization may be performed by
slight changes in temperature just below the magnetic critical temperature, but
much lower than the superconducting critical temperature. Under this circumstance
the change in  is small, and may be neglected. The spin flip and superconducting-
pair decay take place over a scale length f which is comparable with c, so that
one may still have a sharp ferromagnetic-superconductor junction in the ballistic
regime for the ferromagnetic sample. In addition, for high values of the
magnetization (m  1) the spin-down fluid of quasi-particles in the ferromagnet
ceases to fulfill the matching conditions, leading thus to a high decrease in the
corresponding lifetime; however, the two spin fluids of quasi-particle act like two
conductors coupled in parallel, and the spin-up contribution dominates the junction
resistance.17

7. DISCUSSION  OF  SOME  PREVIOUS  INVESTIGATIONS

Blonder and Tinkham[1] studied the electric flow through a conductor-
superconductor junction (Cu-Nb) based on their own theoretical model [2]. These
studies do not go further than classical tunneling experiments of Giaever’s epoch.
The so-called Sharvin resistance [3] of a micro-bridge is nothing but Casimir’s
resistance in a disguised form.

Deutscher and Feinberg [4] make a discussion about a conductor
(ferromagnet)-superconductor-conductor (ferromagnet) device, with many non-
warranted hypotheses. The work seems to be based on previous work by Soulen et
al. [5], which claims to measure the magnetization by using a feromagnet-
superconductor junction.

In a recent paper Merill and Si[6] discuss the spin injection into s- and d-
wave superconductors.

An interesting phase-coherent transport in a superconductor-conductor-
superconductor mesoscopic structure has recently been analyzed, [7] which brings
not very much in addition to Josephson-type interferometers.

A much more rigurous experiment is reported by Worledge and Geballe [8]
They claim to having deposited 50 Å of Al on 20 Å of SrTiO3 (STO) on 1000 Å of
La0.67Sr0.33MnO3 (LSMO) on 300 Å of YBa2Cu3O7 (YBaCu) on a STO substrate.
Al is either normal or superconducting, STO acts like a tunneling barrier, LSMO
seems to be highly spin-polarized while YBaCu is superconducting. Very likely
everything is in the ballistic regime, and spin-polarized injection currents destroy

17 The general theory of two solids contact by the present authors will be forthcoming soon in
this journal.
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soon the superconductivity. The experiment measures typically the differential

conductivity, which consists of 2 2 2~ ( ) ( ),d dU e U f m  where the function
( )f m  may be the ferromagnetic conductivity as given in one of the preceding

sections; at zero voltage a certain supercurrent may also appear between the two
superconductors; measuring this differential curent-voltage characteristics one may
infer the value of m; the “de-superconductivization” of the superconducting
sample, as performed by orbital depairing, Zeeman spliting-up of the pairs and
spin-orbit interaction, [9] is a particular feature of the differential characteristic
which deserves special attention, but it is not worth investigating.

A related work puts forward recently [10] a superconducting transistor made
of a stack of three superconducting films, the intermediate one being itself a double
layer; by applying a magnetic field the inner superconductor swings into a normal
conductor, leading to an increase of current.

Jedema et al. [11] have analyzed recently a ferromagnet-superconductor
contact spin resistance with some inconsistent results to some extent.

A series of periodical peaks at the superconductor-conductor-superconductor
junction for a Josephson-like tunneling transport has recently been suggested, as
associated with Andreev reflection [12].

Spin-polarized currents seem to be created in quantum wells by polarized
light [13].

Spin-polarized current-voltage characteristics are claimed to have recently
been calculated for a ferromagnet-superconductor junction; [14] however, the

results of this author do not go much beyond the classical 2 2 2~j e U  with
variations as those coming from additional tunneling barriers.

A ferromagnet-superconductor-ferromagnet transistor for spin-polarized
currents was originally proposed by Johnson [15], by varying the superconducting
gap with a magnetic field.

Spin-polarized currents that flip at the interface, injected from a ferromagnet
(Ni-Fe permalloy) into a normal (paramagnetic) conductor (Al), have originally
been demonstrated by Johnson and Silsbee [16].

8. ADDITIONAL  NOTES

It seems that the notion of “transferring a superconducting pair into a normal
conductor, or ferromagnet” is present with some authors in spintronics, in order to
investigate spin correlations; however, unless an extended contact is present, in
which case the transfer is continuously smooth from a pair to quasi-particles, a pair
can only be transferred by giving it at least 2 , which means one  at least per each
quasi-particle, which amounts to Andreev reflection for quasi-particles with an
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excitation energy .  Pairs can only be transferred between two
superconductors, within the coherence length at the junction, in which case we
have the well-known Josephson interference.

Orbital depairing, Zeeman spliting up of the pairs and spin-orbit scattering
are thought probably to contribute essentially to destroying the superconductivity
by a spin-polarized injected current. However, this is not quite true. First, the
lifetime brought about by such interactions is comparable with, if not longer than
the usual eletron-electron and electron-phonon interactions; in addition, in the
diffusive regime of transport the spin polarization is flipped out shortly after pasing
through the junction, by the differences in the Fermi energies (which are larger
than the lifetime interactions), for equilibrium;18 in the ballistic regime the spin-
polarized current gives rise to a high magnetic field, which destroys the
superconductivity above certain, relatively low, values of the current. In addition, if
it brings the superconducting sample in the intermediate state, then
superconducting vortices occur and the normal regions act like pinholes for the
transport.

It is perhaps worthwhile estimating in this connection the magnetic field
induced by a spin-polarized current. It is easy to see that the electric flow may be
written as 2~ ( )( )( )Fj e k eU l  with usual notations, or ~ ( )( );Fj env eU vk l

one may also take  for ,Fvk  though we know that usually the latter may be
pretty larger than the former; it follows that ~ ( )( )Fn n eU vk l  electrons are
transported by the flow per unit volume.19 They have a magnetization BM n m

per unit volume, if the current is spin-polarized, so that, from 2 8MH H , it
follows a magnetic field ~ .BH n m  Now, 219 10B erg/Gs, and we may

estimate a magnetic field 3~10 ( )( )FH eU vk l m  Gs; in the ballistic regime such
a field may be high enough to reach the critical value for superconductivity.

Indeed, there are 2 2~ ~ ~ ( )F F F Fn k k k v n vk  pairs per unit volume,

whose energy n  is comparable with the critical magnetic energy 2 8 ;cH

hence a typical value 2 3~10 10cH Gs for the critical field.20

Let ( );p Fn n n vk  a longitudinal displacement field u produces a

change p pn n divu  in the pair density; their energy 2( )p p F pE n vk n n  per

18 The exchange interaction is always present.
19 It is worth noting that the charge en  is transported per unit volume under the voltage drop

Uv l  per unit time, which makes an energy en vU l jU l jE  per unit volume and unit time, as
expected, where E is the electric field.

20 Similarly, the Curie field (mean-field) of a ferromagnet can be estimated from ,m BH

hence typical values H ~ 105 Gs, which are much higher than characteristic magnetic fields in a
superconductor.
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unit volume changes by 2 2( ) )( ) ;p F pE vk n n divu  together with the kinetic

energy 2( )n m tu  per unit volume one obtains the sound waves  = sk

propagating in the pair fluid with velocity ;F Fs vk m k 21 hence

supercurrents lower than 2( )p Fen s env vk .

Furthermore, it is also worth recalling here a few basic questions related to
superconductivity. First, as it is well-known, the superconducting gap is an
uncertainty in the Fermi energy, as regards the formation or destruction of the
superconductivity, so that ~ ,v  where ~ ( )Fa vk  is the coherence length

of the superconducting pairs (and the pair density 2~1 ).n a  It is over this
coherence length where the superconducting pairs are continuously created and
destroyed in a superconductor; this process suffers a proximity effect at the
interface of a superconductor with a normal conductor, or a ferromagnet, where it
competes with the stronger uncertainty arising from the difference in the Fermi
energies; this is why the destruction of the superconducting pairs proceeds over the
characteristic length f, which is typically much shorter than the coherence length.
On the other hand, at the interface between two superconductors, it is precisely
such coherence lengths over which the pairs are delocalized, making possible the
flow of the Josephson’s currents. A similar discussion holds also for the
ferromagnet, and the spin-flip length f of the spins at the interface between a
ferromagnet and a normal conductor, or superconductor.

Secondly, let us assume that the sample has a finite thickness d , so that the
energy spectrum is 2 2 2 2 22 2 ,k m n md  where k  is the in-plane wavevector

and n denotes here the transversal quantal number; it is easy to see that the Fermi
energy is 2

0~ ,cn  where 2 2
0 2md  is the transversal localization energy and

the cutoff cn d a  (for 1);cn  the superconductivity tries to acquire a two-
dimensional character, as corresponding to the n-branches of the spectrum, which
makes it unstable against fluctuations; in order to preserve its three-dimensional
character the condition 0~ n  should be satisfied for n as large as nc; it
follows ( )d a , which is a characteristic length comparable with the
coherence length.

Actually, for such thin samples the superconductivity is only partially
destroyed, because the above condition 0~ n  is satisfied up to 0~ ;sn
the number of states affected by superconductivity can easily be computed from

2 2
0~ ~ ( )( ),sn

s n
N A k A a  where A is the area of the sample; one obtains

cylindrical superconducting domains of a radius comparable with the coherence

21 They are the superconducting phasons.
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length, covering the area 2
0( ) ~ ( ) ,A A A d a A  where ~ ( )a  has been

used for the coherence length; it is easy to see that their number is
2 3 2 3~ ( ) ( ) ,d eN d a A ad N  where Ne is the number of electrons per unit area.

Acknowledgments. This work has been partially supported by the SNSF (2001).

REFERENCES

1. G. E. Blonder, M. Tinkham, Phys. Rev., B27, 112 (1983).
2. G. E. Blonder, M. Tinkham, T. M. Klapwijk, Phys. Rev., B25, 4515 (1982).
3. Y. V. Sharvin, ZhETF, 48, 984 (1965) (Sov. Phys.-JETP 21 655 (1965).
4. G. Deutscher, D. Feinberg, Appl. Phys. Lett., 76, 487 (2000).
5. R. J. Soulen et al., J. Appl. Phys., 85, 4589 (1999).
6. R. L. Merrill, Qimiao Si, Phys. Rev. Lett., 83, 5326 (1999).
7. N. K. Allsopp et al., J. Phys.: Cond. Matter, 8, L377 (1996).
8. D. C. Worledge, T. H. Geballe, Appl. Phys. Lett., 76, 900 (2000).
9. K. Maki, Progr. Theor. Phys., 32, 29 (1964); see also R. Meservey, P. M. Tedrow, Phys. Rep.,

238, 173 (1994).
10. G. P. Pepe et al., Appl. Phys. Lett., 77, 447 (2000).
11. F. J. Jedema et al., Phys. Rev., B60, 16, 549 (1999).
12. A. Auerbach, E. Altman, Phys. Rev. Lett., 85, 3480 (2000).
13. S. D. Ganichev et al., Phys. Rev. Lett., 86, 4358 (2001).
14. A. A. Golubov, Physica, C326-327, 46 (1999).
15. M. Johnson, Appl. Phys. Lett., 65, 1460 (1994).
16. M. Johnson, R. H. Silsbee, Phys. Rev., B35, 4959 (1987); ibid, B37, 5326 (1988); see also F. J.

Jedema et al., Nature, 416, 713 (2002).


