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Abstract. The development of masers in the 1950s made possible amplifiers that were much
quieter than other contemporary amplifiers. An analysis of narrow-band yields a fundamental
theorem (Caves theorem) for phase-insensitive linear amplifiers; it requires that such an amplifier,
will add noise as large as half-quantum of zero-point fluctuations. For phase-sensitive linear
amplifiers the theorem establish a lower limit on the product of the noises added to the two phases. In
the last decade it was shown theoretically that solid-state masers without inversion may be obtained
in multilevel spin systems in dilute paramagnetic solids at high temperature subjected to several
strong microwave fields. In the present paper the authors apply the Caves theorem to the maser
without inversion in order to find out the best ways in which the proposed device can work.
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1. INTRODUCTION

A linear amplifier is one whose output signal is linearly correlated with the
input signal where is understood that the information is given by the complex
amplitudes of the relevant modes. The discovery in the 50s of the masers made
possible the amplification with very law noise in comparison with other amplifiers.
That fact produced a lot of intense studies in the aria of quantum limits on noise for
masers, parametric amplifiers and in general for all linear amplifiers [1–3]. The set
of linear amplifiers contains the amplifiers which convert the frequency (where the
output signal frequency is different by the input signal frequency) as well as phase
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sensitive amplifiers (where the output signal depends in an essential way on the
phase of the input signal). For all this devices it was possible at the beginning of
the 80s to have a unitary theory regarding the quantum limits on noise [1]. The
theory developed refers only for electromagnetic signals of narrow-band
(bandwidth / 2f  ). A linear amplifier is takes an input signal and creates an
output signal from the interaction of the input with the internal freedom degree of
the amplifier. Each mode will be denoted by an index  and a frequency . The

operators ,a a  and ,b b  characterize the population of each mode before and
after interaction. We will denote by I the set of all input modes and by O the set of
all output modes. The equation of evolution for a linear amplifier is:

( ) , .op op

I

b M a L a F O  (1)

The operators opM and opL  depend only of the operators of internal modes

of the amplifiers and therefore they commute with a , a  where I. The

operators F  are responsible for the noise created by the amplifier. We are
interested in the F  fluctuations and not by its mean value, therefore we can
consider without loosing from generality that 0.F  It is obvious that the

mean values of the operators opM  and opL  will determine the amplification, and

the fluctuations of these operators will introduce a supplementary noise. Of course,
this noise depends on the noise of the input signal. Because we are interested in the
best amplifiers, regarding the noise, we will suppose that there are not fluctuations

in the values of the operators opM  and opL  and therefore we can replace the

operators by their mean values: opM opM  and opL opL . In this case

the equation (1) becomes:

(M L ) , .
I

b a a F O  (2)

Because the input and output operators have to respect the commutation relations

( , 0a a  and , )a a  we have the unitarity conditions:

0 (M L L M ) ,
I

F F  and

* *(M M L L ) ,
I

F F    for all   , .O
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If we consider just one mode of frequency , with the creation and
annihilation operators a+, a we can write the following relation 1 2a x ix  where
the operators x1 and x2 are the Hermitian real and imaginary parts. They obey the

following relation 1 2, / 2.x x i  The operators x1 and x2 are the amplitudes of the
mode’s quadrature phases – i.e., they give the amplitudes of the mode’s cos t  and
sin t  oscillations. For a single mode, equation (2) becomes:

M Lo I Ib a a F . (3)

We have to define what is meant by phase-insensitive amplifier. The
fundamental property of a phase-insensitive amplifier is that when the input signal
has phase-insensitive noise, the output, both in terms of the signal and the noise,
shows no phase preference the only effect of a phase shift of the input is an
equivalent phase shift of the output. We can define a phase-insensitive linear
amplifier as one that satisfies the following two conditions:
(i) The expression for ob  is invariant under arbitrary phase transformations

I o  (phase preserving amplifier) or I o  (phase conjugating
amplifier).

(ii) If the input signal has phase insensitive noise the output signal has phase
insensitive noise, i.e., 2 2

o ob b  if 2 2 .I Ia a
An amplifier that fails to meet these two conditions is called phase-sensitive

linear amplifier.
If we want to continue the analysis it is convenient to introduce the complex

amplitudes for aI and :ob 1 2Ia x ix  and 1 2 .ob y iy  The output of a phase-
sensitive linear amplifier depends in an essential way on the phase of the input. The
evolution equation splits into the following equations 1 1 1(M L)y x F  and

2 2 2(M L)y x F  where 1
1 ( )
2

F F F  and 2
1 ( ).
2

F i F F  One can now

define gains for phases: 2
1 (M L)G  and 2

2 (M L)G  and a mean gain:
2 2

1 2
1 ( ) M L
2

G G G  all gains being measured in units of number of

quanta. The gain of a phase-insensitive amplifier is independent of phases

1 2( ).G G G

2. THE  CARACTERIZATION  OF  NOISE
AND  THE  CAVES  THEOREM

When the equations are written in a preferred form, the uncertainties in the
output quadrature phases have the simple form 2 2 2( ) ( ) ( )p p p p opy G x F  the
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first term on the right being the amplified input noise and the second term the noise
added by the amplifier. Only one number is needed to characterize the noise added
by a phase-insensitive amplifier, because we have 1 2( ) ( ) .op opF F  The noise

added can be characterized by an added noise number 2A /opF G  which gives

the added noise referred to the input and measured in units of number of quanta.
For a phase sensitive amplifier we can define the noise added for both phases

2
pA / ,p pop

F G p = 1, 2.

The Caves theorem claims that the quantum noise number satisfies, in the
case of phase-insensitive amplifier, the following relation:

1A 1 G  (4)

where the upper sign is for phase preserving amplifier and the lower one for phase
conjugating amplifier. In the terms of output signal we have:

1 1( A) 1 .
2 2O xb G a G G  (5)

For the phase-sensitive amplifier the theorem is:

1/ 2 1/ 2
1 2 1 2

1(A A ) 1 ( )
4

G G  (6)

where the upper sign (lower) is valid when M L ( L M ).  For the phase-
sensitive amplifier the theorem imply that if we have a decrease of noise in one
phase we will have also an increase of noise in the other phase. One can notice that
for 1 2 1G G  (the case of parametric degenerate amplifier) the amplifier does not
add noise on the two phases.

3. THE  SPECTROSCOPIC  BRIDGE

The spectroscopic bridge is a proposed method of phase sensitive detection,
which act like a maser without population inversion [3, 4]. The theory is a semi-
classical one, which use the density matrix technique. The field is supposed to
be classical and in consequence coherent. The theory proof that the output signal
is linear correlated with the input one. That means that the fields are
linearly correlated in second quantification, and the means number of photons
are  linearly correlated. This can be proof choosing an input signal [5, 6]:

21
2 !

0

exp
n

in

in
inn

n

in in n  where iin in e  is any complex number and
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inn  is the state in which there are n photons with wave vector k  and polarization

vector ( ).k  Similarly we can choose a output field and imposing the relation

in M out  where M is a real number. We have 
( )[ ( )]

0
( )!

rn k
r

in
r

a k
n

n k
 and

similarly for the output signal. From all this equations results that the fields are
linearly correlated in second quantification.

If M were not real, the first consequence would be that the classical fields are
not linearly correlated.

The method is based on a principle similar with those of a transistor. Let us
consider a paramagnetic sample with three levels n mE E E  and three quasi-
monochromatic fields related by

.nm n m  (7)

It was proved that if we have a small variation of intensity i.e., 2 2
ij ijd p p

(here pij are the matrix elements of the hamiltonian of interaction between sample an

fields), we have the following power variation 22( ) ( )ij i j ijdP E E Nf material d p

where N is the total number of spins and f(material) is a function which depends
only on the sample. In consequence: / / /n n m m nm nmdP dP dP

22 ( ) .nNf material d p

From theory we have [3, 4]: 02 02
n mp p  and therefore:

0 0/ / ,r r
n n m mN V N V  (8)

where r
nN  means the average number of photons with frequency n  of the

reference field and V is the volume sample.
If we note r

n n  the phase difference between the input signal
which is supposed to be of small power, coherent, with the frequency n  and the
intense field of frequency n , we have the following relation

0 24( ) ( )cos /n n B n B ndp E E Nf material g B g B

where g is the spectroscopic factor, B the Bohr magneton, 0
nB and ndB  the mag-

netic reference field and its variation. We can write down the following formula

2 2 2
0 04( ) ( )cos /r

n n B n n n ndp E E Nf material g N N V  (9)

We have a similar relation for .mdp  From equation (8) and (9) one can
calculate that:
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2 2 2 216 ( ) / ( ),n mG N f material g material  (10)

where G represents the amplification when the input signal is in phase with the
intense field n . In this case the amplification is maximum. When the input signal
is in anti-phase with the intense field the amplification is zero. If we supposed that

0r
n  and that the axes which we have chosen like quadrature make the  angle

with the reference axes, than 2
1 cosG G  and 2

2 sin .G G  We have the re-

lations 2
1 cosin

in nN N  and 2
2 sinin

in nN N  as well as 2
11 cosout

in nN N G

and 2
22 sinout

in nN N G . From these relations one can conclude 2
mtg

2 2 .ntg tg  In consequence if we have / 4  the amplification is phase

insensitive, and if / 4  the amplification is phase sensitive. For a small  we

have the following relation: 2 2 2
1 2 sin cosG G G 2 2 2 2 2(1 ) .G G  In

consequence 1 2 1G G  if 2 21/ ;G  in this case the amplifier does not add noise
on either phases (is like an degenerate parametric amplifier).

4. THE  CALCULATION  OF  NOISE
IN  MASER  WITHOUT  INVERSION

For the calculation of noise one should take into account the presence of
cavity. If we have a cavity which contains a radiation of frequency v and energy W
we can define the intrinsic quality factor: 0 02 /Q W P  where P0 is the
absorbing power by the cavity walls. We can also define the magnetic quality
factor 2 /m mQ W P  where Pm is the absorbing power by the sample. The

cavity which contains the sample has a quality factor: 01/ 1/ 1/ mQ Q Q . The
noise produces in the input and output lines as well as the walls of the cavity is of
thermal nature. For this is enough to know that a body at temperature T which
absorbs a percent  of the incident radiation of frequency v will re-radiate a noise
power in the band  according to:

1
 / exp ( ) .m

hP h T
KT

 (11)

The noises sources are: (i) the losses in input and output lines; (ii) the losses
in cavity walls; (iii) the noise added by sample in concordance with Caves theorem.

The losses in input and output lines can be calculated considering an
absorption coefficient  and a temperature T-constants, and a elementary length dz.
We have: ( )N NdP P dz T dz . Integrating this relation: 

2 1
(1 )N NP P
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( )T  where: 1 ,le l is the length of the line, 
1NP  is the noise at the

beginning of the line, 
2NP  is the noise at the end of the line.

The absorption coefficient of the walls can be calculated by:

0 0/ (1 ) /in cP P Q G Q  where P0 is the power absorbed by the walls, Pin is the
power of the input signal, /out inG P P , and Pout the power of the output signal.

The noise for paramagnetic sample can be treated with the Caves theorem
(we will analyze the phase insensitive case): (1/ 2)( 1)Noise sa in saP G P G

0[ / 2 ]V  where we have: Pin the noise of the input signal, and Gsa is the
sample amplification. We have:

0( )0 in m mout in m

in in in

P P PP P P P
G

P P P

and therefore 0( )

0( )
.in m m

sa
in n

P P P
G

P P

Unlike the maser case, in this situation we have the input signal of frequency

n  and the output frequency .m

For an amplification device, we can define the noise factor:

output  power  noise
(input power noise)   amplification

F .

For calculating the output noise power, we will suppose that the line width in
the amplification process is given by the natural width of the levels of the
paramagnetic sample (the same approximation as in the maser case). We have:

( )

0( )

( )
0

0( )

{ [ ( )(1 ) ( )] (1 ) ( )

(1 ) ( ) 1/ 2( 1)[ ]/ 2 }(1 ) ( )

c n
noise i c

n

c m
c sa m

m

Q
P G T T G T

Q

Q
G T G V T

Q

(12)

Here Ti characterizes the input noise, T  is the average temperature of the

input line, Tc the cavity temperature. If 1h
KT

 we have ( )T KT  and therefore

we can calculate the noise factor: .out noise out noise

in noise i

P P
F

G P G KT
From direct calculations one can write:

( ) ( )

( ) 0( )

111 1 (1 )
2

c n c mc sa

i i o n m i

Q QT T G T
F

T G T Q Q G GT
 (13)
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If 1G  we have:

( ) ( )

( ) 0( )
1 (1 )

2
c n c mc sa

i i o n m

Q QT T G
F

T T Q Q G
 (14)

Using the approximation: 0( ) 0nP  (very good quality factor on frequency

( ) )n  we have:

0( ) 0( )2in m m m
sa

in i

P P P P
G G

P P
  and therefore 0( )2

1 1msa

i

PG
G GP

 (15)

5. CONCLUSIONS

From equations (14) and (15) we have:

( ) ( )

( ) 0( )

3 (1 )
2

c n c mc

i i o n m

Q QT T
F

T T Q Q
 (16)

If we compare the previous formula with the maser case:

0
 1 (1 )c c S c

i i i m

T T Q T Q
F

T T Q T Q
 (17)

we observe that in the spectroscopic bridge we do not have spin temperature
dependence (which in our situation is close by the thermodynamic temperature).
This fact is a big advantage. The explanation is that without population inversion
involves reduce values of the populations on the superiors levels and in
consequence a low value for the spontaneous emission. In other order of ideas, the
theory and experiment [7, 8] have proved that the spontaneous emission of atoms
which are in electromagnetic fields is increasing by a factor of about 1.6% when
the electromagnetic field has the same frequency as the spontaneous emission; and
decreasing by a factor of 0.5% when we have different frequencies. In consequence
we believe that because the input signal has the same frequency as one
electromagnetic field and different in rapport with the other two, we will not have
an increase of spontaneous emission. As we have shown, the spectroscopic bridge
can work like an amplifier sensible to phase ( 1 2 1G G ), case in which it does not
add noise on either phase, the “price” being the attenuation of the signal on one
phase. In a recent experiment the principles of the spectroscopic bridges were
confirmed by experiment [9].
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