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Abstract. We give an overview of recent results obtained in the study of collisions between 
coaxial stable three-dimensional Ginzburg-Landau dissipative solitons. We present the generic 
outcomes of collisions between coaxial nonspinning (vorticityless) and spinning (vortex) solitons in 
the three-dimensional cubic-quintic complex Ginzburg-Landau equation. We identify the generic 
scenarios of collisions between both corotating and counter-rotating vortex solitons. 
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1. INTRODUCTION 

In the past years there has been an increasing interest in the theoretical and 
experimental study of multidimensional localized structures arising both in optics 
and in Bose-Einstein condensates (BEC) [1–11]. These localized (soliton-like) 
structures either nondissipative or dissipative [1] ones are quite complex physical 
objects, which are spatially confined on the order of wavelength (or even in the 
sub-wavelength scale). They represent the "particle-like" counterpart of the more 
common extended light structures.  

However, the optical media that might sustain such confined self-guiding 
structures should be nonlinear, that is, their refractive index should be dependent 
on the light intensity (for typical Kerr-like nonlinear media the nonlinear shift of 
the refractive index is proportional to the light intensity). Different types of 
nonlinearities of optical materials such as absorptive, dispersive, second-order (or 
quadratic), third-order (or cubic, Kerr-like) can be used in practice to prevent either 
temporal dispersion or spatial diffraction of light beams or both of them. The field 
of both temporal and spatial optical solitons emerged from these fundamental 
studies of the interaction of intense laser beams with matter. However, there exist a 



 D. Mihalache, D. Mazilu 2 176 

third kind of optical solitons, which are spatially confined pulses of light, the  
so-called spatiotemporal optical solitons [4], alias “light bullets” [12]. These 
spatiotemporal optical solitons are nondiffracting and nondispersing wavepackets 
propagating in nonlinear optical media. The three-dimensional (3D) spatiotemporal 
optical solitons are localized (self-guided) in the two transverse (spatial) 
dimensions and in the direction of propagation due to the balance of anomalous 
group-velocity dispersion (GVD) of the medium in which they form and nonlinear 
self-phase modulation. Therefore, the "light bullet" is a fully three-dimensional 
localized object in both space and time. It is believed that the spatiotemporal 
optical solitons could be used as information carriers in future all-optical 
processing information systems [4]. 

Both two-dimensional (2D) and three-dimensional solitons in self-focusing 
cubic (Kerr-like) media are unstable because of the occurrence of collapse in the 
governing nonlinear Schrödinger model [13]. However, several possibilities to 
arrest this intrinsic collapse were considered, such as periodic alternation of self-
focusing and defocusing layers [14] and various generalizations of this setting [15], 
and the use of weaker instabilities, viz}, saturable [16] or quadratic ( )( )2χ  ones 

[17–20]. Tandem layered structures, composed of alternating linear and quadratic 
layers, were also proposed and investigated [21]. Other theoretically developed 
approaches use off-resonance two-level systems [22] and self-induced-
transparency media [23]. 

The undesired collapse effect does not occur in cubic nonlinear media whose 
optical nonlinearity is nonlocal [24], therefore these media may also give rise to 
stable multidimensional optical solitons, see [25, 26]. Two-dimensional spatial 
optical solitons stabilized by the nonlocality were observed in vapors [27] and lead 
glasses featuring strong thermal nonlinearity [28]; in the latter case, elliptic and 
vortex-ring solitons were reported. One-dimensional optical solitons supported by a 
nonlocal ( )( )3χ  nonlinearity were also created in liquid crystals[29]. Moreover, 

photonic lattices [30], vortices [31], spatial solitons in soft matter [33], multipole 
vector solitons in nonlocal nonlinear media [33], and one-dimensional solitons of 
even and odd parities supported by competing nonlocal nonlinearities [34] were 
considered in the context of nonlocality of the optical nonlinearity. The long-range 
cubic nonlinearity induced by long-range interactions between atoms carrying 
polarized magnetic momenta in an effectively 2D BEC also leads to the prediction 
of stable 2D solitons [35]. Moreover, 2D vortex solitons [31] and 3D fundamental 
(vorticityless) and spinning solitons [36] were considered in the context of 
nonlocality in various models in optics and BEC. 

Localized optical vortices (alias vortex solitons), have drawn much attention 
as objects of fundamental interest, and also due to their potential applications to all 
optical information processing, as well as to the guiding and trapping of atoms 
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[37]. Unique properties are also featured by vortex clusters, such as rotation similar 
to the vortex motion in superfluids. The complex dynamics of vortex clusters in 
optical media with competing nonlinearities has been studied too [38]. Various 
complex patterns based on vortices were theoretically investigated in the usual 
BEC models, based on the Gross-Pitaevskii equation with the local nonlinearity 
[39]. 

Soliton necklaces [40–41] and rotating soliton clusters [42] were studied, too. 
Moreover, in nondissipative optical media with competing nonlinearities, robust 
soliton complexes (in the form of “clusters” or soliton “molecules”) composed by 
several fundamental (nonspinning) solitons were thoroughly investigated [42]. The 
quasi-stable propagation of such robust soliton clusters is a generic feature of 
media with competing nonlinearities (self-focusing cubic and self-defocusing 
quintic nonlinearities or quadratic nonlinearities in competition with self-
defocusing cubic nonlinearities) [42]. 

A class of both 2D and 3D spatially modulated vortex solitons, the so-called 
azimuthons, was introduced in Ref. [43]. Azimuthons represent intermediate states 
between the radially symmetric vortices and nonrotating multipole solitons.  

Experimentally, only two-dimensional spatiotemporal optical solitons that 
overcome diffraction in one transverse spatial dimension have been created in 
quadratic nonlinear media [44]. With regard to theory, both fundamental 
(nontopological) and topological (vorticity-carrying) stable three-dimensional 
spatiotemporal optical solitons have been predicted, in media with competing 
optical nonlinearities (quadratic in competition with self-defocusing cubic or self-
focusing cubic in competition with  self-defocusing quintic) [45]. 

 

 
Fig. 1 – Isosurface plots of soliton local intensity,showing the stable input 3D  

Ginzburg-Landau solitons: a) S=0; b) S=1; c) S=2. 

Recently, it was shown the existence of stable three-dimensional 
spatiotemporal optical solitons confined by either harmonic two-dimensional 
optical lattices [46] or radially symmetric Bessel lattices [47]. Thus it was 
predicted the existence of stable three-dimensional spatiotemporal solitons in a 
two-dimensional photonic lattice and it was found that the Hamiltonian (H)-versus-
soliton norm (N) diagram exhibits a generic two-cusp structure. Correspondingly, a 
“swallowtail” shape of the H-N diagram emerged, which is a quite rare physical 
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phenomenon [46]. This unique feature is a generic one for both nontopological 
(nonspinning) [46–49] and topological (spinning) [50] 3D solitons. This unique 
property has been also found both in the case of radially symmetric Bessel lattices 
[47], which is a result suggesting a promising approach to generate stable "light 
bullets" in optics and stable three-dimensional solitons in attractive Bose-Einstein 
condensates [48], and in the search for stable light bullets in media with quadratic 
nonlinearities in competition with self-focusing cubic nonlinearities [49]. 

 

 
Fig. 2 – Isosurface plots of soliton local intensity, showing the initial and final sets of 
zero-vorticity (S=0) solitons involved in the collision, at different values of kick χ :  
a) input (at z = 0); b) merger into a single soliton, for 1χ =  (at z = 120); c) creation of 
an extra soliton, for 2χ =  (at z = 30); d) quasielastic collision for 4χ =  (at z = 15). 

The simulations were run on the grid of size 160 × 160 × 601. 

In the past years there was an increasing interest in the study of 
multidimensional dissipative localized structures (dissipative solitons). These 
unique physical objects are modeled by nonlinear partial differential equations 
involving gain and loss terms in addition to the common nonlinear and 
dispersive/diffractive terms. These nonlinear dynamical systems allow for the 
formation under certain conditions of stable dissipative solitons [1]. One of the 
prototype dissipative dynamical system is that governed by the complex Ginzburg-
Landau equation, which is one of the most studied nonlinear partial differential 
equation in nonlinear science [51]. Recently stable fundamental (vorticityless) and 
spinning (with nonzero intrinsic vorticity) spatiotemporal dissipative optical 
solitons described by the complex cubic-quintic Ginzburg-Landau equation were 
found [52–60] and both elastic and inelastic collision scenarios were identified 61–64].  

In this work we briefly overview some recent theoretical studies of ollisions 
between coaxial stable three-dimensional Ginzburg-Landau dissipative solitons. 
We present the generic outcomes of collisions between both nonspinning and 
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spinning solitons in the three-dimensional cubic-quintic complex Ginzburg-Landau 
equation. Moreover, the collisions between both corotating and counter-rotating 
coaxial vortex solitons are briefly described. 

 

 
Fig. 3 – The same as in Fig. 2, but for the vortex solitons with S=1: a) input at z = 0; b) 1χ =  (at 

z = 100); c) χ 2=  (at z = 30); d) 4χ =  (at z = 15). The grid size is 193 × 193 × 601.  

COAXIAL GINZBURG-LANDAU SOLITON COLLISIONS 

We investigate soliton collisions in the framework of the following cubic-
quintic complex Ginzburg-Landau equation in three dimensions: 

 
( )

( ) ( )2 4

1i – i – i
2 2

i 1 – i – – i 0.

z xx yy tt
DU U U U

U U U

   + β + + γ +   
   

 + δ + ε ν µ = 

 (1) 

In terms of nonlinear optics, U is the local amplitude of the electromagnetic 
wave in the bulk medium which propagates along axis z, the transverse coordinates 
are x and y, while the temporal variable is t = T–z/V0, where T is time and V0 the 
group velocity of the carrier wave. The coefficients which are scaled to be 1/2 and 
1 account, respectively, for diffraction in the transverse plane and the self-focusing 
Kerr nonlinearity. Here 0β ≥  is the effective diffusivity in the transverse plane, 
real constants ,δ ε  and µ  represent, respectively, the linear loss, cubic gain, and 
quintic loss. The parameter 0ν ≥  accounts for the self-defocusing quintic 
nonlinearity, that may compete with the cubic term, D is the GVD coefficient [D>0 
(D<0) corresponds to the anomalous/normal GVD], and 0γ ≥  accounts for the 
dispersion of the linear loss. 
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Fig. 4 – The same as in Fig. 2, but for the vortex solitons with S=2: a) input at z = 0; (b) 0,5χ =   
(at z = 120); c) 2χ =  (at z = 32); d) 4χ =  (at z=16). In this case, the largest grid was used, of size  

201 × 201 × 601. 

The Ginzburg-Landau equation is a ubiquitous model in many physical 
problems [51], and in different forms it appears as the simplest model for 
describing dissipative solitons [1], clusters of localized states rotating around a 
central vortex core [65], and laser patterns in cavities [66]. 

Next we will consider the cubic-quintic Ginzburg-Landau model governed by 
Eq. (1) with zero spectral filtering parameter ( )0γ = . This model admits free 
motion of solitons along axis z, and thus makes collisions between them possible 
[62]. Notice that the free motion in plane (x, y) is impeded by the diffusivity term 
in Eq. (1), which contains the parameter 0β > . As shown in Refs. [53, 54], this 
term is necessary for the stability of dissipative vortex solitons, while fundamental 
solitons, with S=0, may be stable at 0β = . 

The stationary soliton solutions to Eq. (1) are given by 

 ( ) ( ) ( ), , , , exp i i ,U z x y t r t kz S= ψ + θ  (2) 

where r and θ  are the polar coordinates in plane (x, y, the integer number 0S ≥  is 
the soliton vorticity (the fundamental solitons correspond to S = 0), k is the soliton 
nonlinear wave number, and the complex function ( ),r tυ  obeys the stationary 
equation, 

 

( ) ( )

2

2

2 4

1 1 1– i –
2 2

i 1 – i – – i .

rr r tt
S D

r r

k

  β ψ + ψ ψ + ψ +  
   
 + δ + ε ψ ν µ ψ ψ = ψ 

 (3) 
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Fig. 5 – Contour plots display the evolution of field |U| in plane (t,z), for three collision scenarios  
at different values of kick parameter χ  for the solitons with S=0: a) merger into a single soliton,  

at 1χ = ; b) creation of an extra soliton, at 2χ = ; c) quasielastic collision, at 4χ = . 

 
In the above equations we set the filtering parameter 0γ = , as said above. 

Localized solutions to this equation must decay exponentially at r, t →∞ , and 
must behave as rS at 0r → . We will consider the following set of parameters: 
D = 1 (anomalous GVD), 1, 0.1, 0.4µ = ν = δ = , and 0.5β = . We will consider 
collisions between stable stationary dissipative solitons with vorticities S = 0, S = 1, 
and S = 2 [62]. 

In order to study generic outcomes of collisions between Ginzburg-Landau 
solitons, one should take a pair of stable three-dimensional solitons, separated by a 
large temporal distance T. The solitons are set in motion by “kicking” them in the 
axial direction, i.e., multiplying each soliton by ( )exp i t± χ , where χ  is the 
corresponding “kick” parameter. Next we will fix the cubic gain 2.3ε =  and we 
vary the kick parameter χ . For the above set of parameters the three-dimensional 
solitons with S = 0, 1, 2 are all stable [53, 54], being characterized by the following 
values of the soliton energy (soliton norm),  

 ( ) 2

0 –
2 d d , ,E r r t r t

∞ +∞

∞
≡ π ψ∫ ∫  (4) 

 ( ) ( ) ( )0 52, 1 171, 2 310.E S E S E S= ≈ = ≈ = ≈  (5) 
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Fig. 6 – The same as in Fig. 5 but for vortex solitons with S=1: a) 1χ = ; b) 2χ = ; c) 4χ = . 
 

In Figs. 2–4 we show the isosurface plots of soliton local intensity, for both 
the initial and final sets of solitons involved in collision, at different values of the 
kick parameter χ . Gradually increasing initial transverse collision momentum χ , 
we have observed the following outcomes (the initial separation was typically 
T = 30, but variation of T did not affect the numerical results): 

(a) Merger of the two solitons into one, at small values of χ , namely, in 
intervals 1.1χ ≤  for S = 0, 1.2χ ≤  for S = 1, and 1.4χ ≤  for S = 2. 

(b) Generation of an extra soliton, at intermediate values of χ , namely, in 
intervals 1.1 2.2< χ ≤ for S = 0, 1.2 2.4< χ ≤ for S = 1, and 1.4 2.4< χ ≤ for S = 2.  

(c) Quasielastic interactions at larger χ , i.e., 2.2χ >  for S = 0, 2.4χ >  for 
S = 1, and 2.4χ > for S = 2. In this case, the solitons pass through each other, and 
after the collision they feature velocities slightly smaller than they had originally. 
These three collision scenarios are further illustrated in Figs. 5–7 by pictures of the 
evolution of the field in the plane of (t, z). Note that the merger of the two colliding 
solitons into a single one [see also Ref. [61] for examples of the interaction of two 
nonspinning light bullets with zero transverse velocities, when they fuse if the 
initial separation (in time) is small], a promising effect for potential applications 
has been reported before in other physical settings: (i) the study of solitons in 
saturable materials with a linear and quadratic intensity depending refraction index 
change [67], and (ii) the study of dynamics and collisions of moving solitons in 
Bragg gratings with dispersive reflectivity [68]. 
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Fig. 7 – The same as in Fig. 5 but for vortex solitons with S=2: a) 0,5χ = ; b) 2χ = ; c) 4χ = . 

 
The transformation of two colliding solitons into three, one quiescent and two 

moving has also been reported in collisions of solitons in media with saturable 
nonlinearity [67], collisions of two one-dimensional dissipative spatial solitons in 
periodically patterned semiconductor amplifiers [69], and collisions of moving 
solitons in Bragg gratings with dispersive reflectivity [68]. Thus our results show 
that the soliton creation is a generic feature of collisions of both fundamental 
(S = 0) and spinning ( )0S ≠  three-dimensional solitons described by the complex 
Ginzburg-Landau equation. 

3. COUNTER/ROTATING COAXIAL  
GINZBURG-LANDAU SOLITON COLLISIONS 

Next we present a natural extension of the analysis performed in the 
preceding section to the case of collisions between “counter-rotating” vortex 
solitons, i.e., ones with opposite vorticities, S1 = –S2 = 1 and 2. 

Thus, to study the collisions between counter-rotating three-dimensional 
Ginzburg-Landau solitons, we started, at z = 0, with a pair of stable vortex solitons 
in the form of ( ) ( ), / 2 exp ir t T Sψ + θ  and ( ) ( ), / 2 exp –ir t T Sψ + θ , with S = 1 
or 2, which are separated by a large initial temporal distance, t T∆ = . In most 
cases, we took T = 30, but varying the initial separation did not affect outcomes of 
the collisions. 
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Fig. 8 – Generic outcomes of collisions between 3D solitary vortices with (S1, S2) = (+1, –1) 
are shown by means of isosurface plots of local intensity |U(x,y,t)|2, for different values of 
kick χ . a) The input configuration (at z=0); the localized vortices move, towards their 
collision, along their common axis, i.e., in the positive and negative vertical directions.  
b) A single nonrotating dipole cluster composed of two fundamental solitons, which is the 
outcome for 1χ =  (shown at z=100). c) Two counter-rotating dipole clusters, for 1.5χ =  
(at z=170); both dipoles lie in planes 30t = ±  oriented perpendicular to the original axis.  
d) Two counter-rotating double-humped “unfinished vortices”, plus a single dipole cluster, 
for 2χ =  (at z=34). e) Two counter-rotating “unfinished vortices”, without the additional 
cluster, for 2.4χ =  (at z=27). f) A quasielastic collision, for 4χ =  (shown at z=15). 

 
The vortex solitons are set in motion by kicking them in the opposite 

directions along the common axis, i.e., multiplying each one by ( )i t± χ . Thus, the 

full initial configuration ( )0, , ,U x y t  was  

 
( ) ( ) ( )
( ) ( )
0, , , , / 2 exp iS + i

, – / 2 exp –i – i .

U x y t r t T t

r t T S t

= ψ + θ χ +

+ψ θ χ
 (6) 

Because, at 0γ = , the governing three-dimensional Ginzburg-Landau equation (1) 
is Galilean-invariant in the longitudinal (i.e., axial) direction, the application of the 
kick to an isolated quiescent soliton, ( )0 , , ,U z t x y , generates an exact solution in 
the form of a “walking soliton”, see, e.g. [9]: 

 ( ) ( ) ( )2
0, , , , , , exp i – i / 2 .U z x y t U z x y t a t a zχ = χ ± χ χ∓  (7) 

At small values of the transverse collision momentum χ , slow collisions are 
inelastic, leading to merger of the vortices into one or two clusters of fundamental 
solitons (dipoles or quadrupoles in the cases of 1S = ±  and 2S = ± , respectively). 
In the case when two clusters are generated by the collision, they feature 
decelerating rotation in opposite directions. With the increase of the kick parameter 
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χ , two “unfinished vortices” (counter-rotating multi-humped objects without a 
through hole in the center) emerge from the collision; at intermediate values of χ , 
they appear along with a cluster of fundamental solitons. As a matter of fact, the 
“unfinished vortices” replace the original solitary vortices. Finally, the collision 
becomes elastic at large values of transverse collision momentum χ . It is worthy 
to notice that the dipolar and quadrupolar clusters feature very slow expansion, 
being robust against strong perturbations. On the contrary, the “unfinished 
vortices” eventually split into dipolar pairs of fundamental solitons (see below). 

 

 
Fig. 9 – The same as in Fig. 8, but for the collision of solitary vortices with (S1, S2) = 
= (+2, –2). a) The input at z = 0 (as well as in Fig. 8, the localized vortices move, 
towards their collision, in the vertical directions). b) A single nonrotating quadrupole 
cluster composed of four fundamental solitons, which is the outcome of the collisions 
for 0.2χ =  (shown at z = 120). c) Two counter-rotating quadrupole clusters, for 

0.5χ =  (at z = 120); the clusters lie in planes 33.4t = ±  oriented perpendicular to the 
original axis. d) Two counter-rotating four-humped “unfinished vortices” plus a single 
quadrupole cluster, for 1χ =  (at z = 120). e) Two counter-rotating “unfinished 
vortices”, without the additional cluster, for 2.5χ =  (at z = 25). (f) A quasielastic 
collision, for 4χ =  (shown at z=16). 

 
The five collision scenarios identified above (see Ref. [63] are illustrated by 

means of isosurface plots of local intensity ( ) 2
, ,U x y t , for different values of kick 

χ  (Figs. 8 and 9). The typical splitting of “unfinished vortices” into dipolar pairs 
of fundamental solitons is shown in Fig. 10 by plotting the evolution of the total 
soliton energy; it converges to the value 104E ≈ , which is the total energy of the 
two identical fundamental (spinless) solitons. 
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Fig. 10 – Evolution of the total soliton energy in the case of the splitting process of “unfinished 

vortices” into pairs of fundamental solitons at 2χ =  (for (1, –1) solitons) and at 2.5χ =   
(for (2, –2) solitons). 

4. CONCLUSIONS 

In this work we overviewed some recent results concerning collisions 
between coaxial stable three-dimensional Ginzburg-Landau dissipative solitons. 
We presented the generic outcomes of collisions between coaxial fundamental 
(vorticityless) and higher-order (vortex) solitons in the three-dimensional cubic-
quintic complex Ginzburg-Landau equation. We identified several generic 
scenarios of collisions between both corotating and counter-rotating vortex 
solitons. However, in the present paper we briefly overviewed recent results 
obtained for relatively simple coaxial configurations. A challenging problem is the 
analysis of three-dimensional soliton collisions in a more general geometrical setting. 
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