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Abstract. We investigate the dynamics of 2 promoters controlled genes in a repressing periodic 
(plasmid) cascade. It is shown that for plasmids having these type of genes the protein production is 
propagating in an oscillatory way depending on the delay time involved between transcription and 
translation. Biological implications are discussed. 

1. INTRODUCTION 

Biological systems are organised into big blocks of networks that control the 
precise regulation of biochemical reactions within the cell and its interaction with 
the outside medium. But the complexity of these networks and nonlinear 
intracellular and intercellular interactions makes difficult the examination of 
dynamical processes. This fact has motivated researchers to engineer synthetic 
gene networks to see the nonlinear effects in isolation. Thus, starting with the 
cascade repressilator, many other circuits have been studied and constructed 
experimentally, like oscillators, toggle switches, negative autoregulation circuits, 
logic gates and pulse generating nets [4, 15]. Transcription cascades are defined by 
a set of transcription factors that regulate each other sequentially. The first step 
transcription factor activates or represses the second step one, which in turn, 
activates or represses the third and so on. Cascades are oftenly appearing in nature. 
For example in the case of E. Coli and Saccharomices cerevisiae, regulatory 
networks contain transcriptional cascades with two or more stages [7]. Cascades 
help programs of succesive gene expression as observed in the formation of 
flagella in E. Coli, sporulation in budding yeast, or regulatory pathways in bacterial 
cell cycles [8]. In multicellular organisms like Drosophila and sea urichin some 
developmental programs require temporal ordering of events controlled by cascade 
processes [12]. 
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However most of the studies so far have been focused on simple bacterial 
genes whose expression is controlled by only one promoter. In this paper we intend 
to make a small step further and see the dynamics of cascades made out of genes 
controlled by two promoters. More precisely, we intend to study a repressilator, i.e. 
a cascade of repressors having two promoters and taking into account the time 
delay which appear between transcription and translation (because the genes are 
more complex, these type of temporal delays should be taken into account). In 
order to see more effects we consider that each product of the gene is also a 
selfactivator for it (otherwise the results would have been just trivial 
generalisations of the ones existing already in literature [5]). 

Genes with two promoters are quite often encountered in biological world in 
specially in eukariotic cells. However even in bacterial cells, like Pseudomonas 
Aeruginosa [9] and Ersinia entherocolitica [13], the rpoE operons and araP are 
controlled by two ar more promoters. However here we are not intending to study a 
specific cascade but only to give an exactly solvable model which shows some 
particularities which can be useful for future engineered circuits. What we are 
interested in is the time dependence of protein production. The cascade can be 
closed (plasmid-type structure) which is more amenable to be constructed 
synthetically. Writting the rate equatuions for protein production on every gene and 
taking into account that binding probability of RNA polymerase (RNAp) is 
controlled by two promoters and also the delay, we end up with a partial 
differential delay equation. Remarkably this equation can be solved exactly in 
terms of elliptic functions. 

2. TRANSCRIPTION OF GENES WITH TWO PROMOTERS 

To start our discussion let us remind how transcription and translation 
processes work in the simplest case of a gene controlled by a single promoter. The 
transcription and translation involve the synthesis of mRNA from a single DNA-
encoded gene template (by means of sticking RNAp to the promoter) then the 
synthesis of protein from mRNA template and then decay of mRNA and protein 
molecules. This is, of course, a strongly simplified image of the gene expression. In 
addition, the DNA flips between the transcriptionally active and inactive states at 
rates that depend on the concentrations of transcription factors which bind to the 
promoter region of the gene. The regulatory aspect of gene expression comes from 
the fact that all the transcription factors are proteins expressed by some genes 
which in turn activate or repress other/same genes. 

The simplest mathematical model of the trasncription-translation process for 
a single gene is based on the mean-field equations: 
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Here m and p are the concentrations of mRNA and produced protein respectively. 
Also α  is the mRNA synthesis rate (typical 1/min), –1

mλ  is the mRNA life time 

(typical 5min), ν  is the protein synthesis (typical 10nM/min) and –1
pλ  is the 

protein life time (typical 30 min)[14]. The term µ  in the equation (2) is related to 
the fact that a certain amount of mRNA entering into translation process is not 
coded [11]. However there are many things which are not contained in this model. 
For instance time-delay from transcription initiation to mRNA completion, time-
delay related to the transport to ribosomes, and time-delay in protein synthesis. 
Also fluctuations over scale of cell doubling time are important. In any case the 
model is valid for big time scales (“big” means beyond cell-cycle doubling time). 
In this big scale the mRNA synthesis can be considered fast so the equation (1) in 
the system is stationary i.e. dm/dt = 0. Accordingly, the gene expression is given 
by: 
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In bacteria the protein synthesis rate α  is controlled by the amount of time RNAp 
spends bound to the promoter so is no longer a constant. It can be measured by the 
binding probability of the RNAp to the promoter region, binding which is 
amplified or reduced by the influence of other proteins called transcription factors 
(TF). In the case of activation [1] this can be mathematically modelled as: 

 ( ) ( )1
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on off
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+ + ρ + + ωρ

 

where Zon/Zoff are partition functions over all states of TF-binding for the promoter 
bound/not bound by the RNAp. Here [ ] / ,RNAp Kρρ =  [ ] / ,q TF K=  

( )–exp – /TF RNAp BG k Tω= , where in the square brakets we put the concentrations 

of RNAp and TF, Kρ, K are the dissociation constants between the RNAp, TF and 
the respective operator sequence in the regulatory region and ∆GTF–RNAp is the free 
energy interaction between RNAp and TF. Because the concentration of RNAp is 
small the promoter activity is given by a truncated Taylor expansion in the first 
order (and rescaling with ωρ ): 
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In bacteria, oftenly the produced proteins are transcription factors themselves and 
they may act sinergically. Taking into account the delay the transcription 
translation process is modelled more generally as: 
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where τ  is the time delay between transcription and translation, q1,…qN are 
transcription factors and p is the protein produced by the gene (which can be one in 
the set q1,…qN). We have to mention that the formula (4) works only when 
transcription factor acts as a monomer (i.e one operator site in the regulatory 
region). In the case of multiple operator sites (and allosteric polymerisations of 
transcription factors before entering into regulatory regions) an effective formula is 
used [3]: 
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where a < b and n is the Hill coefficient which is a positive number.  
All we have discussed above for the activation is valid on the repressing case 

but the promoter activity becomes a decreasing function and the formula (4) turns 
into: 
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Also the effective formula has the same form provided a > b.  
There are many cases where many transcription factors act on the promoter to 

help or break the transcription. In this case one has to take into account the 
partition functions for all the possibilities of RNAp – TF1 – TF2 – … – TFm 
couplings in order to get the mathematical expression for promoter activity 
function [2]. 

In the case of two promoters, which is the case we are interested in, the 
promoter activity is given by the equilibrium probability that the RNAp binds to at 
least one of the promoters. Imposing that there is no interaction between the 
promoters (which means that transcription factors do not simultaneously interact 
with both polymerases in the unlikely case that both promoters are occupied) the 
transcription rate is given by [2]: 
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Here ( )i
onZ  and ( )i

offZ  are partition functions over all states of TF binding when 
promoter i is bound and not bound by the RNAp respectively. Again in the case of 
activation they can be written as: 

 ( ) ,i
on i iZ q= ρ + ρω  

 ( ) 1 ,i
ioffZ q= +  

where [ ] /i ig TF K=  is the TF affinity coresponding to the regulatory region of the 

i-promoter, and ( )–exp – /
ii TF RNAp BG k Tω =  is related to the free energy of 

interaction between TF and RNAp in the regulatory region of the i-th promoter. 
One can see immediately that in the limit of small ρ (RNAp affinity) then in the 
leading order we have: 
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so in fact we have the sum of the two contributions of the same protein which binds 
on the two promoters. Had we had many proteins we would have taken into 
account all possibilities of coupling among them and promoters. 

3. THE MODEL 

Now we can formulate our model. Consider a gene network cascade where 
each gene is controlled by two promoters of 54σ -type and the protein is a self 
activator and repressor for the next gene in the cascade. The genes are indexed with 
integers n. Let us motivate why we have chosen promoters of type 54σ . This type 
of sigma factor is used at promoters that have many activation sites (some of them 
being quite far allowing DNA looping for activation). They act somehow as 
eukariotic enhancers (i.e. sets of contiguous regulatory binding sites) so the 
transcription mechanism here is believed to be a hibrid one between bacterial and 
eukariotic. Moreover, activators interact with 54σ -polymerases in a more 
specialised way. Namely there is a single site on polymerase that must be contacted 
in order to trigger the conformational change, which lead to open complex [10]. 
Accordingly, in our model only one type of protein touches every promoter. This 
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simplifies considerably the mathematical expression of the promoter activity α 
which becomes precisely the sum of the contributions of every protein. The 
promoter activity functions for the two promoters are considered for simplicity to 
have the same parameters ω. The cascade's underlying network mechanism is the 
following: the protein pn produced by the the gene (n) activates the gene (n) and 
represses the gene (n + 1). This scenario works for every gene (i.e. every n). 

Now from the one gene model (5), (6) we have the equation of the network 
for the gene labelled by n; 
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Now in order to see the effect of the two proteins pn and pn+1 on the 
expression of α we have to take into account all the possible interactions. But, as 
we pointed out above the 54σ  promoters allows only one protein to be attached on 
the regulatory region. Accordingly we shall have exactly the situation described by 
the equation and the expresion of αAR in (6) will be a sum of the form 
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Assuming stationarity of the mRNA production in equation (6) we end up with the 
following partial differential-delay equation (after we normalize 

– /n n n np p K q> ≡ ) 
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In the next section we are going to discuss this equation and biological 
implications. 

4. RESULTS 

First of all we put the equation in a more tractable form by the following 
substitution: 

 1 .
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Since qn is always positive this will impose restrictions on the values of un to be in 
the interval (0,1). In the new variable our equation will be: 
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Since µ and 1/ω are small we can write the equation (after scaling time) as a 
perturbed differential-discrete-delay one in the form: 

 ( ) ( )2
1– – – perturbation.n n n nu u u t u t+ = τ τ + �  (12) 

For simplicity we analyse the unperturbed equation as an evolution one for 
the protein production q(n, t) of the whole periodic gene network. Our discuss will 
be focused on how an initial protein distribution localised on some genes evolves 
in time. In order to see this we take the travelling-wave ansatze q(n, t) = q(n–vt) 
where v is the speed of travelling wave. This evolving distribution will be called 
proteomic signal or proteomic wave. Because we have a plasmid shape with an 
arbitrary number of genes the solution will be a periodic nonlinear wave 

Calling ξ = n – vt we will have: 
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This equation admits solution for v = –1/2τ. Indeed we have: 
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This is nothing but semidiscrete Korteweg de Vries equation [6] in the travelling 
wave ansatze. Its solution is well known [17] and is given in terms of Jacobi-theta 
4 function: 
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where B is the matrix period, N is the number of genes (which is periodicity) and p 
is any integer number. Here we have a constraint on it namely, 

( )2 12 0N B B
N
π  ′τΘ = Θ 

 
 which gives a transcendental equation for B. This 

constraint is nothing but the dispersion relation of the periodic KdV soliton which 
here must be related to the time delay. In order to have a real positive solution B 
should be positive and smaller than 1. For negative values the solution is singular 
(which means u may go to infinity and the protein concentration goes to zero). 
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Also, because the dissociation constant in the expression of qn is big and the 
protein concentration is small we can consider the linear limit namely the following 
equation (which is nothing but the expansion up to order two) 
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d 1 – 1 – – – 1 – .
d n n nq t q q

t ++ τ = ω + µ + ω δ ω  (13) 

We can search for periodic solutions of the form: 

 ( ) ( )cosnq t A kn t= + + Ω  

such that ( ) 0nq t > . We find the following transcendental dispresion relation: 
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Condition for positivity reads as –11 – 2+ ω µ > δ  and is satisfied for a large 
class of proteins since they are stable and δ is very small. Accordingly in the linear 
limit we have an oscillating wave which propagates along the plasmid. 

5. DISCUSSIONS AND CONCLUSION 

The crucial thing here is to check that indeed the solution is in the interval  
(0, 1). Fortunately, the equation is invariant to the following two scalings 

( ) ( )2 , ,t b t u n t bu→ → ξ  so we can put in front of u any number b (such that bu < 1) 
provided we change time scale with b2. This time scale changing means 
modification of the speed. Accordingly the speed of propagation is proportional 
with the amplitude (a wellknown phenomenon in soliton theory) and this amplitude 
is given by the initial condition. Anyway in our case since the velocity is fixed and 
the independent variable is fixed the only chance is that the factor 1/ 2τ  to keep 
the maximum value smaller than 1. Accordingly we must have a compatibility with 
the value of the corresponding period matrix B (which also depends on τ). So the 
existence of such solutions is depending crucially on the value of time delay. 

The solution is indeed a periodic travelling wave which can be interpreted in 
two ways. First it is a propagating signal which activates and represses in cascade 
the genes along the plasmid. The signal is faster or slower depending on the initial 
condition (namely the activity of the triggering gene) and also the time delay τ. So 
indeed a bigger time delay will slow down the sequential genetic activity of the 
plasmid. Second, this periodic travelling wave can be interpreted as describing an 
oscillatory behaviour of every gene in the plasmid with variable frequency 
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depending again on the signal speed. In both cases the delay plays an extremely 
important role controlling the full activation-repression activity of the palsmid. Of 
course our solution is in fact a solution of the nonperturbed equation. Adding 
perturbation will modify the stability of the signal and indeed for some specific 
values of the constants the signal propagation can die out or even cannot be 
launched at all. The stability of the travelling signal in the nonperturbed case is not 
at all automatic as well even though it is a solution of a completely integrable 
equation (semidiscrete KdV). However the rigurous study of it is beyond the scope 
of this paper. From this considerations we can made some assumptions related to 
the biological relevance. It is known that gene cascades offer a temporal 
programme of gene expression that can be used for scheduling protein synthesis 
activities sequentially [16]. In our model we ecounter precise this fact. The genes 
are turned off succesively as the nonlinear wave propagates. Also it has been 
suggested that cascades exhibit a certain capability, the so called “low pass 
filtering” which means ignoring rapid variations of protein concentrations or 
environmental conditions and respond only to longer-lasting ones. This may very 
well happen in our model since the equation is a prototype of integrable system and 
the solitary waves are supossed to be stable (although to our knowledge there is no 
proof so far in the periodic case). As a conclusion we can say that in the plasmids 
made out of genes with two promoters some nice dynamics may appear both as a 
result of nonlinearities and time delay. In this simplified model we computed 
exactly a periodic travelling wave solution for the proteomic signal and showed 
that the speed depends both on the amplitude and time delay. 
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