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In this brief study we determine by variational means a loop in the band structure
of a Bose-Einstein condensate loaded into an optical lattice.
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After the experimental achievement of the Bose-Einstein condensation back in
1995 [1], there has been a surge of papers focused on nonlinear phenomena specific
to Bose-Einstein-condensed gases; the range of topics includes the condensate band
structure, pattern formation, soliton dynamics and management, dynamics of multi-
component condensates, formation and propagation of shock-waves, etc. (see Refs.
[2, 3] for the main results). The condensate band structure, in particular, exhibits
loops of Bloch states (also known as “swallow tails”) [4–6] and stationary states of
higher period than that of the underlying lattice [7]. These states are determined
using the Gross-Pitaevskii (GP) equation and rely either on heavy numerics or on
oversimplified tight-binding models [7]. It is the purpose of this paper to show how
to determine a loop in the band structure of the condensate by variational means using
an ansatz grafted on the Bloch solution (see Refs. [8–10] for related applications of
variational methods to BECs).

Starting from a BEC loaded into an optical lattice of the form V (x)=V0 sin(πx/d)
we write the GP energy functional over two periods of the potential, namely x ∈
[d/2,9d/2]. To this end, we approximate the full wave function as the sum of the lo-
cal wave functions in the two wells under scrutiny and the neighboring ones, namely
ψ = ψ0+ψ1+ψ2+ψ3, where
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Each local wave function consists of a normalized Gaussian that gives the local den-
sity profile within the well, a phase (here incorporated through the phase difference
α), and a plane wave of the form exp(ikx) evaluated at the center of each well. The
total number of atoms in the two wells of interest is constant. This approximation
holds for small nonlinearities, while at larger nonlinearities the phase in each well
acquires a spatial dependence and our ansatz breaks down. Our ansatz captures both
Bloch states and non-Bloch states having twice the period of the optical lattice.

With this ansatz we compute the GP energy
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taking into account only nearest neighbor interactions. Due to the exponential tail of
the local wave functions we can extend the integration domain such that we have
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which yields
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The stationary solutions correspond to ∂E/∂q = 0 where q = {φ,α,ω1,ω2}.
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Fig. 1 – The first Brillouin zone (k ∈ [−π/2d,π/2d]) of the band structure of the condensate for
N = 1, U = 1, V0 = 1, d= 1. In the figure we have depicted the lowest Bloch band and the loop at

the center of the first Brillouin zone.

Solving numerically these equations we see that for U > 0 we have both the
regular Bloch solutions (that is ω1 = ω2) and non-Bloch states with a period twice
that of the optical lattice (that is ω1 6= ω2). In Fig. 1 we show a typical loop structure
in the middle of Brillouin zone along with the lowest Bloch band; non-Bloch states
will be reported elsewhere.The loop reported in this paper using a variational method
is consistent with that obtained using the full GP equation [4–6].

Acknowledgements. For this work Alexandru I. Nicolin was supported by CNCSIS-UEFISCDI
through the postdoctoral project PD122 contract no. 35/28.07.2010.

REFERENCES

1. C. J. Pethick and H. Smith, Bose-Einstein condensation in dilute gases (Cambridge University
Press, Cambridge, 2002).

2. B. A. Malomed, Soliton management in periodic systems (Springer, Berlin, 2006).
3. P. G. Kevrekidis, D. J. Frantzeskakis, and R. Carretero-Gonzlez, Eds., Emergent nonlinear phe-

nomena in Bose-Einstein condensates (Springer, New York, 2007).
4. D. Diakonov, L. M. Jensen, C. J. Pethick, and H. Smith, Phys. Rev. A 66, 013604 (2002).
5. B. Wu, R. B. Diener, and Q. Niu, Phys. Rev. A 65, 025601 (2002).
6. M. Machholm, C. J. Pethick, and H. Smith, Phys. Rev. A 67, 053613 (2003).
7. M. Machholm, A. Nicolin, C. J. Pethick, and H. Smith, Phys. Rev. A 69, 043604 (2004).
8. A. I. Nicolin and R. Carretero-Gonzlez, Physica A 387, 6032 (2008).
9. A. I. Nicolin, Romanian Rep. Phys 61, 641–645 (2009).

10. A. I. Nicolin and M. C. Raportaru, Physica A 389, 4663 (2010).

(c) RRP 63(1) 187–189 2011


