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ON THE TRAJECTORIES OF THE SEISMIC RAYS
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Abstract. The traveling times of the seismic rays are measured experimentally
as functions of the radial angle at the Earth’s centre. These measurements are used to
derive information about the velocities of the seismic waves inside the Earth, making
use of the Herglotz-Wiechert equation. It is well known that the velocity of the seismic
waves increases with depth. We assume a simple linear model of in-depth velocities
profile and derive analytical forms for the rays’ trajectories, both for a spherical model
of Earth and a medium with a plane surface. The trajectories’ equations enable us to
compute the traveling times, the penetration depth and the distance covered by rays on
the surface. The corrections to the traveling times arising from the depth of the seismic
focus are also computed. The comparison of our analytical results with well-known
experimental data of traveling times is satisfactory, which may validate the velocities
model.
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It is well known that the traveling times of the seismic waves can provide rele-
vant information about the velocity of these waves at any point inside the Earth, and,
thereby, data about the Earth’s structure [1]-[3]. Typically, the traveling times of the
seismic rays are measured as functions of the angular distance (radial angle), and
the velocities profile is extracted from these data by using the well known Herglotz-
Wiechert formula; basically, this is a numerical inversion technique of Abel-type
integral equations. We present here explicit analytic formulae for the propagation of
the seismic rays in an isotropic spherical model of the Earth, as well for an elastic
medium with a plane surface, by assuming that the velocity increases linearly with
the penetration depth. We give also here the corrections to the traveling times arising
from the in-depth location of the seismic source. The comparison with the experi-
mental data produces a satisfactory agreement, which may help in validating such a
model. We start by recalling the essential physics behind the rays approximation (or
geometrical optics approximation) [4]-[6].

If the wavelength is much shorter than the lengths of interest a wave may be
approximated locally by plane waves. The phase Φ of such a wave eiΦ is then a
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large number, and we can define wave surfaces Φ = const. The local wavevec-
tor k = gradΦ gives the direction of the wave propagation, so we have local plane
waves which propagates as rays. This is the geometrical optics approximation for
waves, or rays approximation. The phase Φ is called eikonal. Obviously, such local
plane waves propagate between two points fixed in space such as ∆Φ =

∫
kdr be

minimal, i.e. δ∆Φ = 0. Since, for a monochromatic wave with frequency ω we can
write k = ω/v, where v is the wave velocity, the minimum of the eikonal means the
minimum of the time spent on the trajectory. This is Fermat’s principle of the least
time. Similarly, since the ratio of velocities in two media is the refraction coefficient
n in optics, Fermat’s principle means also the minimum of the optical path nl, i.e. the
minimum of the geometrical path l multiplied by the refraction coefficient. It is also
easy to see that for a wave packet the velocity here means the group velocity, and,
in this form, Fermat’s principle is known as the Maupertuis’ principle for a particle.
This is the basis of the Hamilton-Jacobi analogy between waves and particles.
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Fig. 1 – Ray through a stratified model of the Earth.

The eikonal at some point r in space can be written as Φ =kr= kr cosθ, where
θ is the angle between the wavevector k and position vector r. At that point, the
variation of the eikonal is given by the variation of the angle θ, i.e. δΦ =−kr sinθ ·δθ.
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If the change in the eikonal is going to be minimal, its virtual change δΦ must be a
constant multiplied by the virtual variation δθ. We get kr sinθ = const, which is
Snellius’ refraction law; indeed, with k = ω/v = ωn/c, where c is the velocity of the
light in vacuum, we get nsinθ = const, where we can recognize the Snellius’ law.

Let us assume an isotropic spherical model of the Earth, with radius R, as
shown in Fig. 1. We prefer to use the angle θ made by the wavevector k and −r,
where r is the position vector. The refraction law derived above gives immediately

r

v
sinθ = C (1)

for a seismic ray, where C is a constant. Let us assume that the ray starts from the
Earth’s surface with angle θ0 and velocity v0. We assume a dependence of velocity
with radius of the form

v = v0 +a(R− r), (2)
where a > 0 is a constant. Then, by equation (1), it is easy to get

r =R sinθ0

1 + aR
v0

sinθ+ aR
v0

sinθ0

. (3)

We can see that the ray reaches the Earth’s surface at some other point under the same
emerging angle θ0, and the trajectory has a minimum radius for θ = π/2. Making
use of the notations in Fig. 2 we have

cotθ1 = tan(ϕ−θ) =
dx

dy
=
dr sinϕ+ r cosϕdϕ

dr cosϕ− r sinϕdϕ
, (4)

whence we get
dϕ

dθ
=−r

′(θ)

r(θ)
tanθ. (5)

Therefore, the angle ϕ is given by

ϕ=

∫ π−θ0

π/2
dθ

sinθ

sinθ+ aR
v0

sinθ0

; (6)

usually the parameter aR/v0 is much larger than unity, so the above integral can be
approximated by

ϕ' v0

aR
cotθ0. (7)

From measurements at two different locations we can get, by equation (7), the two
parameters v0 and a of the velocities model.

Let us compute the time T needed by the ray to go along its trajectory, i.e. to
sweep the angle φ= 2ϕ (traveling time). From

v =
dl

dt
=

√
dr2 + r2dϕ2

dt
=
|r′|

cosθ

dθ

dt
, (8)
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Fig. 2 – Polar coordinates and the derivative of the function.

where we used equation (5), we get easily

dt=
R sinθ0

v0

|r′|
r sinθ cosθ

dθ , (9)

and

T =
2R sinθ0

v0

∫ π−θ0

π/2
dθ

1

sinθ
(

sinθ+ aR
v0

sinθ0

) . (10)

Again, we take aR/v0� 1 and approximate this integral by

T =
2

a
lncot

θ0

2
. (11)

From equations (7) and (11) we get immediately

T =
2

a
ln

[√(
aR

2v0

)
φ2 + 1 +

aR

2v0
φ

]
. (12)

These traveling times as functions of the angle φ are measured experimentally, so,
by making use of equation (12), we may derive the parameters a and v0 and test
the validity of the velocities model given by equation (2). Usually, the velocity is
determined by the well-known Herglotz-Wiechert equation, which implies solving
Abel-type integral equations and numerical computation.

We can consider also the ray propagation in a medium with a plane surface, as
shown in Fig. 3. We write

ρ2 = r2 +R2−2rRcosϕ (13)
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Fig. 3 – Ray through a stratified half-space.

for ρ2, with the rest of notations given in Fig. 1, and take the limit R→∞. From
equation (6) we get

ϕ'− v0

aR sinθ0
cosθ , (14)

such that

cosϕ' 1− v2
0

2a2R2 sin2 θ0
cos2 θ . (15)

Introducing this cosϕ in equation (13) and making use of r given by equation (3) in
the limit R→∞ we get easily

ρ2 =
v2

0

a2

(
1− sinθ

sinθ0

)2

+
v2

0

a2

cos2 θ

sin2 θ0
; (16)

here, the angle θ is the angle between the vertical axis and the tangent at the curve.
It is more convenient to use the incidence angle α, as shown in Fig. 3, α= π/2− θ.
We get

ρ2 =
v2

0

a2

(
1− cosα

cosα0

)2

+
v2

0

a2

sin2α

cos2α0
. (17)

The distance d in Fig. 3 is given by α= α0,

d=
v0

a
tanα0, (18)

and the depth of the trajectory is given by α= 0,

h=
v0

a

1− cosα0

cosα0
. (19)

The traveling time is given by T = (2/a) lntanα0 = (2/a) ln(ad/v0) (for ad/v0>
1).

Let us assume that the source of the seismic rays is located at depth H below
the surface, H �R. Then, the traveling time will record a slight decrease given by

δT =
2

asinθ0
δθ. (20)
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On the other hand, the radius changes by

H = δr|θ0 =
R

1 + aR
v0

cotθ0δθ, (21)

so we get a change

δT =
2H

aRcosθ0

(
1 +

aR

v0

)
' 2H

v0 cosθ0
(22)

in the traveling time. It corresponds to a change δϕ = 2H/R sin2θ0 in the radial
angle. Equation (22) gives the corrections to the traveling times caused by the depth
of the seismic focus. Making use of equation (7) we can write again the correction
as

δT =
2H

v0

√
1 +

v2
0

a2R2ϕ2
, (23)

which includes explicitly the radial distance Rϕ= d/2.
Various other models of velocities profiles can be investigated along the same

lines as those described herein, with the aim of improving the characterization of the
propagation of the seismic rays in realistic Earth models. Further investigations in
this direction will be reported in forthcoming publications.
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