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Email: mirea@ifin.nipne.ro

Received February 21, 2011

Abstract. Along the minimal action path for the 234U fission, the mass para-
meters are evaluated microscopically with three different models: the cranking model,
the gaussian overlap approximation and the semi-diabatic cranking evaluation. All of
them give similar fluctuations of the inertia along the minimal action trajectory, appro-
ximately the same values in the ground state and after the scission. However, in general
the cranking model gives larger values along the minimal action trajectory while the
semi-adiabatic evaluation gives the smaller ones.
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1. INTRODUCTION

In the macroscopic-microscopic method [1], the whole system is character-
ized by some collective coordinates that determine approximately the behavior of
many other intrinsic variables. The basic ingredient in such an analysis is the shape
parametrization that depends on several macroscopic degrees of freedom. The gene-
ralized coordinates associated with these degrees of freedom vary in time leading to a
split of the nuclear system in two separated fragments. The macroscopic deformation
energy is calculated within the liquid drop model. A microscopic potential must be
constructed to be consistent with this nuclear shape parametrization. A microscopic
correction is then evaluated using the Strutinsky procedure.

The deformation energy is a function of the collective parameters and gives the
generalized forces that act on the nuclear shape. For a complete description of the
fission process, it is therefore required to know how the nucleus reacts to these gene-
ralized forces. This information is contained in the effective mass of the system [2].
The most used approach to calculate the inertia is the cranking model. Recently, the
cranking model was generalized by taking into account the intrinsic excitation pro-
duced during the fission process itself [3]. In this paper our aim is to compare several
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microscopic approaches for the inertia: the cranking model, the generator coordinate
method in the gaussian overlap approximation (GOA) and the semi-adiabatic crank-
ing model. A previous comparison between microscopic theories and the Werner-
Wheeler method was realized in Refs. [4, 5].

2. MICROSCOPIC MASS PARAMETERS

In a multidimensional deformation space, where the nuclear shape is described
by the set of n independent generalized coordinates qi, the inertia tensor Mij is de-
fined by the equation of the kinetic energy T :

T =
1

2

n∑
i,j=1

Mij(q1, ..., qn)
∂qi
∂t

∂qj
∂t

(1)

In the adiabatic description of the collective behavior of a nucleus, the nucleons are
assumed to move in a average deformed potential. Using a Hamiltonian H(q1, ...qn)
that includes pairing interactions, introducing the collective parameters qi by means
of the Lagrange multipliers, it is possible to obtain the response of the nuclear system
for slow changes of the shape within the cranking model formula [6]

Mij(q1, ..., qn) = 2
~2
∑

ν,µ

〈
µ
∣∣∣ ∂H∂qi ∣∣∣ν〉

〈
ν

∣∣∣∣ ∂H∂qj
∣∣∣∣µ〉

(Eµ+Eν)3

×(uµvν +uνvµ)2 +Pij

(2)

where |ν > and |µ > are single particle wave functions, Eν , uν and vν are the quasi-
particle energy, the vacancy and occupation amplitudes of the state ν, respectively,
in the BCS approximation, and Pij is a correction that depends on the variation of
the pairing gap ∆ and the Fermi energy λ as function of the deformation coordinates.
The inertiaB along a trajectory in the configuration space spanned by the generalized
coordinates qi (i=1,n) can be obtained within the formula

B =

n∑
i=1

n∑
j=1

Mij
∂qi
∂R

∂qj
∂R

(3)

In the previous formula we consider that R is a generalized variable that describe the
elongation of the nuclear system, as discussed in the next section. The total inertia
is the sum of the contributions that correspond to the proton and to the neutron level
schemes. Usually, the matrix elements of the derivatives of the Hamiltonian in Rel.
(2) are replaced by the matrix elements of the derivatives of the mean field potential
alone.

In the generator coordinate method [7–10] the inertia must be calculated sepa-
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rately for proton and neutron working spaces:

Mn(p) = 2~2

[∑
ν,µPνµPµν(uνvµ+uµvν)2

]2∑
ν,µ(Eν +Eµ)PνµPµν(uνvµ+uµvν)2

(4)

The quantities Pνµ are given by the next formula that depends on a specific trajectory
in the collective configuration space

Pνµ =
n∑
i

Pνµ(qi)
∂qi
∂R

(5)

where [8]

Pνµ(qi) =−< ν | ∂H
∂qi
| µ > uνvµ+uµvν

Eµ+Eν
+ δνµ

∆

2E2
ν

(
∂λ

∂qi
+
εν−λ

∆

∂∆

∂qi

)
(6)

Here, εν is the single particle energy of the state ν. The inertia of the nuclear system
is obtained as follows:

B =
MnMp

4(Mn+Mp)
(7)

where the index n stands for the neutron level scheme while the index p is for protons.
In the case of the semi-adiabatic cranking model, the tensor elements of the

inertia are:

Mij = 2~2
∑
ν 6=µ

(Eνµ−E0)
(
|κν
√
ρν |κµ|

|κν |
√
ρµ
− κµ

√
ρµ|κν |

|κµ|
√
ρν |2

)
< µ | ∂H∂qi | ν >< ν | ∂H∂qj | µ >

(Eνµ−
∑

γ 6=ν,µT
νµ
γ −E0 +

∑
γ Tγ)2

(8)
where κν = uνvν is the paring moment component, ρν = v2

ν is the occupation proba-
bility of the level ν in the seniority zero state. The energies of the seniority two states
are:

Eνµ =
∑
γ 6=ν,µ

ρνµγ εγ−
|∆νµ |2

G
−G

∑
γ 6=ν,µ

(ρνµγ )2 + εν + εµ (9)

where the levels ν and µ are blocked, the values of ρνµγ address occupation probabi-
lities for the seniority two states and

T νµγ = 2ρνµγ εγ−2G(ρνµγ )2 +
κνµγ ∆∗νµ+ (κνµγ )∗∆νµ

2

(
(ρνµγ )2

| κνµγ |2
−1

)
(10)

In the previous formalism, E0 and all quantities without indices νµ correspond to the
seniority zero state. The inertia along the trajectory is obtained within Rel.(7). The
final value of B is a sum of the quantities obtained for protons and neutrons as in the
classical cranking model and the relation (3) is used.
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3. THE FISSION TRAJECTORY

In order to calculate the microscopic inertia for the fissioning system, the first
step is the determination of a fission path that satisfies the minimal action criteria [2].
The sequence of shapes that follows a nucleus when it passes from the ground state
to the scission point depend principally on the potential energy surface and the iner-
tia. In the macroscopic-microscopic model, first of all, it is required to define a
nuclear shape parametrization. In the following, an axial symmetric nuclear shape
is obtained by smoothly joining two spheroids of semi-axis ai and bi (i=1,2) with a
neck surface generated by the rotation of a circle around the axis of symmetry. By
imposing the condition of volume conservation we are left by five independent ge-
neralized coordinates {qi} (i=1,5) that can be associated to five degrees of freedom:
the elongation R given by the distance between the centers of the spheroids; the
necking parameter C = S/R3 related to the curvature of the neck, the eccentricities
εi associated with the deformations of the nascent fragments and the mass asym-
metry parameter η = a1/a2. This parametrization was widely used in investigating
fission processes [11–16] and the formation of superheavy elements [17, 18]. This
parametrization is described in detail in Refs. [19].

If we consider that the elongation q1 =R is the main coordinate, the dependen-
cies of the other generalized coordinates qi = fi(R) (i = 2,5) must be obtained. As
specified in Ref. [2], such trajectories emerge by minimizing the action functional.

P =−2

~

∫ Rf

Ri

√
2B(qi,∂qi/∂R)V (qi)dR (11)

where B(qi,∂qi/∂R) is the inertia along the trajectory and V (qi) is the deformation
energy. Ri and Rf stand for the elongation associated to the ground state and the
exit from the barrier, respectively. In our calculation the reference of the deformation
energy is always taken as the energy in the ground state. So the next condition is
fulfilled V (Ri) = V (Rf ) = 0. As it can be seen in formula (11), as the fissioning
nucleus passes from its ground state to the scission configuration, the sequences of
shapes depends mainly on the deformation energy and the inertia. The deformation
energy is obtained in the frame of the macroscopic-microscopic model [1] while the
inertia is computed within the cranking approximation. The deformation energy was
obtained by summing the liquid drop energy ELDM with the shell and the pairing
corrections δE. The macroscopic energy ELDM is obtained in the framework of the
Yukawa - plus - exponential model [20] extended for binary systems with different
charge densities [21] as detailed in Ref. [22]. The shell corrections are obtained
within the two center Woods-Saxon model [19]. They are many methods to minimize
dynamically the action integral [23–26]. We will use the method initiated in [23] and
used extensively in fission calculations [27–30].
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4. SINGLE PARTICLE LEVELS

Fig. 1 – The potential barrier V for the 234U fission along the minimal action trajectory as function of
the elongation R. The ground state is located close to a distance between the centers of fragments of

about 4 fm.

To calculate the inertia, we need a microscopic potential. The microscopic
potential must be constructed to be consistent within our nuclear shape parametriza-
tion. The simplest way it to use a semi-phenomenological Woods-Saxon potential.
In order to take into account nuclear deformations going over to separate shapes and
obtain two separated fragments, a two-center shell model with a Woods-Saxon poten-
tial was developed recently [19]. Other recipes that allows to treat strongly deformed
nuclei are presented in Refs. [31,32]. The mean field potential is defined in the frame
of the Woods-Saxon model:

V0(ρ,z) =− Vc

1 + exp
[

∆(ρ,z)
a

] (12)

where ∆(ρ,z) represents the distance between a point (ρ,z) and the nuclear sur-
face. This distance is measured only along the normal direction on the surface and

(c) RRP 63(3) 676–684 2011



6 Microscopic treatments of fission inertia within the Woods-Saxon two center shell model 681

it is negative if the point (ρ,z) is located in the interior of the nucleus. Vc is the
depth of the potential while a is the diffuseness parameter. In our work, the depth
is Vc = V0c[1± κ(N0−Z0)/N0 +Z0)] with plus sign for protons and minus sign
for neutrons, V0c= 51 MeV, a=0.67 fm, κ=0.67. Here A0, N0 and Z0 represent
the mass number, the neutron number and the charge number of the parent, respec-
tively. This parametrization, referred as the Blomqvist-Walhlborn one in Ref. [33],
is adopted because it provides the same radius constant r0 for the mean field and the
pairing field. That ensures a consistency of the shapes of the two fields at hyperde-
formations, i.e., two tangent ellipsoids. The Hamiltonian is obtained by adding the
spin-orbit and the Coulomb terms to the Woods-Saxon potential. The eigenvalues
are obtained by diagonalization of the Hamiltonian in the semi-symmetric harmonic
two center basis [34,35]. In this work, the major quantum number used is Nmax=12.
The two center Woods-Saxon model will be used to compute shell and pairing cor-
rections together with inertia in this work. The two center shell model represents a
valuable instrument to investigate the role of individual orbitals for the treatment of a
wide variety of superasymmetric disintegration processes, pertaining to cluster- and
alpha-decays [36–38].

Fig. 2 – Family of nuclear shapes, from the spherical configuration up to scission, along the minimal
action trajectory. The distances between the center of the fragments are marked on the plot.

5. RESULTS

The calculations were performed for the fission of 234U having as final par-
tition 102Zr+132Te. The fission barrier taking as reference the ground state of the
parent located at approximately R =4 fm is displayed in Fig. 1 as function of the
distance between the centers of the fragments. The potential barrier exhibits the well
known two humped shape. The sequence of nuclear shapes along the minimal action
trajectory is plotted in Fig. 2. In the caption the distances between the centers of the
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Fig. 3 – The inertia B along the minimal action trajectory as function of the distance between the
centers of the fragments R. Full line: the semi-adiabatic cranking evaluation. Dot-dashed line:

cranking approximation. Dashed line: gaussian overlap approximation.

fragments are also marked. It can be seen that the shapes become asymmetric when
the second barrier is penetrated.

In Fig. 3, the three inertia obtained within our microscopic approaches are plot-
ted as function of R. After scission, it can be be observed that the reduced mass is
reached. Our results are in line with those given in Refs. [8, 9] concerning the com-
parison between the cranking model and the gaussian overlap approximation. The
cranking model gives values always larger than the gaussian overlap approximation
with a factor 1/3 in average. The two models show a similar shell structure when
the deformation is modified. The semi-adiabatic approach gives lower values than
the two other models and a similar shell structure with deformation. The maximal
values of the inertia are obtained in the region of the second barrier and in the second
well. Similar values of the inertial are obtained in the ground state. The penetration
of the first barrier is characterized by a small effective mass.

The microscopic inertia was calculated for large scale amplitude motion that
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characterizes the fission process, at moderate asymmetries. We have used in the past
the two center shell model to treat alpha-decay and cluster emission as superasym-
metric fission processes and the model is proved valid. Therefore an analysis of the
effective mass behavior in very asymmetric processes, including the alpha decay of
superheavy elements [39, 40] is planned in the future.
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Romanian Ministry of Education and Research.
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