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Abstract. It is well known that soliton bearing nonlinear differential equations show up in 
many areas of physics when waves can propagate in a weakly nonlinear and dispersive media. Here 
we will show the surprising analogy between the single hump solitary waves appearing in long wave 
regimes in relatively shallow water and mathematically quite similar description of nano-solitons of 
ionic waves propagating along microtubules in living cells. 
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1. WEAKLY NONLINEAR SHALLOW WATER WAVE REGIME 

We first consider an inviscid, incompressible and non-rotating flow of fluid 
of constant depth h. We take the direction of flow as x-axis and z-axis positively 
upward the free surface in gravitational field. The free surface elevation above the 
undisturbed depth h is η(x, t), so that the wave surface at height z = h + η(x, t), 
while z = 0 is horizontal rigid bottom [1, 2, 3]. 

Let φ(x, z, t) be the scalar velocity potential of the fluid lying between the 
bottom (z = 0) and free space η(x, t), Fig. 1. Then we could write the Laplace and 
Euler equation with the boundary conditions at the surface and at the bottom, 
respectively, as follows: 
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It is useful to introduce two following fundamental dimensionless parameters: 
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where η0 is the wave amplitude (Fig. 1), and l is the characteristic length-like 
wavelength. Accordingly, we also take a complete set of new suitable non-
dimensional variables: 
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where ghc =  is the shallow-water wave speed, with g being gravitational 
acceleration. 

 
Fig. 1 – The shape of gravitational water wave for fixed t with characteristic parameters:  

h is undisturbed depth and η is the wave elevation with η0 being its amplitude.  

In terms of (5) and (6) the initial system of equations (1), (2), (3) and (4) now 
reads 
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Expanding Φ(x, τ) in terms of δ 

 2
0 1 2  ,Φ =Φ + δ Φ + δ Φ  (11) 

and using the dimensionless wave particles velocity in x-direction, by the definition 
u = ∂Φ/∂X, then substituting of (11) into (7-9), with retaining terms up to linear 
order of small parameters (δ, σ) in (8), and of second order in (9), we get 
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Making the differentiation of (12) with respect to X, and rearranging (13), we get 
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Returning back to dimensional variables η(x, t) and v = dφ/dx, (14) now reads 

 
3

2
2

v v 1 vv  .
3

g h
t x x x t

∂ ∂ ∂η ∂
+ + =

∂ ∂ ∂ ∂ ∂
 (16) 

We could define the new function V(x, t) unifying the velocity and 
displacement of water particles as follows: 
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implying that (16) becomes 
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We seek for traveling wave solutions with moving coordinate of the form ξ = x – vt 
and with wave speed v, which reduces (18) into ordinary nonlinear differential 
equation as follows: 
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Integrating (19) once, and setting 

 dV ,
d

W=
ξ

 (20) 

we get 
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with the following abbreviations 
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C1 is the constant of integration. Taking the next integration of (21) one obtains 
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When v2 = v0
2 = gh, β = 0 and above equation reduces to 
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The solution of this equation can be assumed in the form 

 ( ) ,W A= θ ξ  (25) 

where θ(ξ) represents the elliptic function satisfying the differential equation 
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with the parameters p, q, obeying the condition 
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Inserting (25) in (24), and equating the coefficients of equal powers of θ(ξ), one 
gets 
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Last equalities yield 
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Since parameters p and q satisfy inequality (27), p must be positive imposing that α 
and C1 should be of opposite signs, (C1 < 0). The condition (27) implies the 
restriction 

 3 2
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The solution of (24) now reads   
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with new constant of integration C3. Eventually, the bounded periodic solution is 
now represented by 
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with arbitrary constant c and parameters ej (j = 1, 2, 3) being the real roots of the 
cubic equation 
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Jacobian-sine elliptic function sn follows from relation 
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In order to get the solitary wave limit we take the modulus of Jacobian elliptic 
function defined as 
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being equal to unity. In this limit, by using definitions (17) and (20), we get bell-
shaped soliton describing in this case giant solitonic water wave (Fig. 2) 



6 From ocean solitons to cellular ionic nano-solitons 629 

 ( ) ( ) ( ){ }3 2
1 3 1 3 0 1, 4 secx t h e e h e e x v t c e η = − − − + −  . (35) 

 
Fig. 2 – The shape of water soliton wave for fixed t with pertaining parameters:  

speed v0, length l, depression 4h3e1 and elevation η0 = 4h3(e1–e3). 

Let us just make a simple illustration. If we take the typical ocean depth of 
the order of h = 103 m, solitonic speed is of the order of 

 2
0
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The usual length of a soliton created by earth-quake in such depths is of the order 
of l = 100 km = 105 m. It safely satisfies the condition of (5). Consequently, (35) 
thus gives 
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yielding, from (32), with appropriate integration constants, to the following real 
roots 
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The corresponding solitonic peak is 

 9 10
0 4 10 5 10 m 2m.−η = × × × =  

It brings the realistic, very moderate amplitude which can not be easily identified in 
the open sea. Numerical solution of this case obtained with the aid of Matlab is 
shown in Fig. 3. 
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Fig. 3 – Numerical solution of solitonic water wave for ocean depth h = 103 m, and length l = 100 km. 

2. NONLINEAR IONIC WAVES ALONG MICROTUBULES 

We now examine in more detail a new microscopic biological phenomenon 
leading to quite analogous equations and pertinent solution as in Section 1. 
Microtubules (MTs) are cytoskeletal biopolymers made up of GTP-dependent  
α, β-tubulin protein dimer assemblies [4]. 

MTs have geometry of long hollow cylinders having outer diameter of 25 nm 
and inner diameter of 15 nm, with lengths that typically span up to several 
micrometers (Fig. 4). They consist of 13 parallel protofilaments in vivo. 
 

 

Fig. 4 – A MT hollow cylinder of 13 parallel protofilaments with 
denoted characteristic dimensions: outer and inner diameters  

of 25 nm and 15 nm and tubulin dimer length of 8 nm. 
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Recently it has become apparent that neurons might utilize MT networks in 
cognitive processing via MT associated proteins (MAPs) in neuronal processes 
such as learning and memory. MTs are also linked to the regulation of a number of 
ion channels, thus contributing to the electrical activity of excitable cells [5]. 

Very recently, it was elaborated a new model of MT as the electric nonlinear 
transmission line [6]. In this reference one could find the details about calculations 
of capacity, resistivity and inductivity of basic unit of the model. This unit is the 
elementary ring (ER) consisting of 13 dimers with characteristic dimensions 
represented in Fig. 5a. Each dimer has two outward protruding rod-like tubulin tails 
(TTs), Fig. 5a and Fig. 5b. One of them, disposed on β-monomer, is flexible and 
able to change its length depending on the amount of counter-ions condensed along 
its negative surface. This circumstance is the essential argument why this model 
includes the capacity of MT surface which is nonlinear [6]. 
 

    
a)                                         b) 

Fig. 5 – a) The landscape of a tubulin dimer with dimensions of TTs the length of 4.5 nm  
and diameter of 1nm, and surface charge distribution according to Tuszynski et al [7]; b) the shape  

of TTs, where β-TT is being shrank, thus diminishing its capacity. 

The basic idea here is to farther amend the underlying model taking into 
account the presence and the functions of nano-pores (NPs) embedded in MT wall, 
as presented in Fig. 6. 
 

 
Fig. 6 – The sketch of a NP with approximates shape and dimensions.  

The conical shape follows from MT geometry. 
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These NPs act like ionic channels (ionic pumps) according to the investigations 
performed by the group lead by Eisenberg [8, 9]. This point will be elaborated later 
in more details. Let us first mention the properties of an ER. MT surface is highly 
negative due to pertaining amino acids which have lost some protons, according to 
polyelectrolyte character of MTs. Around MTs surface the ionic cloud (IC) of 
positive counter-ions is condensed. This IC is separated of bulk cytosol by the shell 
depleted of any ions (Fig. 7), having the thickness named Bjerrum-length (lB), 
estimated to be 
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Here e is the charge of an electron, ε0 the permittivity of vacuum, ε = 80 the 
relative permittivity of cytosol, kB Boltzmann’s constant, and T = 310 K is the 
physiological temperature. This depleted shell plays the role of dielectric and 
confines ionic flow within IC. 
 

 
Fig. 7 – The geometry of a MT with ionic cloud and depleted layer clearly depicted, including 

corresponding dimensions: the thickness of IC: λ = 2 nm and Bjerrum length, lB = 0.67 nm.  
The top part of a) shows α and β TTs. 

We will here completely omit the calculations of the resistive components of 
the ER just taking over the values from [6] as follows: the static part of capacity of 
an ER is estimated to be 
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wile, the inductance is 

 16
0 8 10 H,L −= ×  (38) 

and longitudinal ohmic resistance amounts 

 9
0 10 .R = Ω   (39) 

But, since ER’s capacitance should change with an increasing concentration of 
counter-ions, it implies that the charge on this capacitor diminishes with increasing 
the voltage in a nonlinear way as follows: 

 ( )0 1 ,n n nQ C bv v= −  (40) 

where, the parameter b is restricted to obey the inequalities 

 0 1;      1,nb bv< < <<  (40.a) 

providing that the change of capacity is being small enough (bvn<<1), since the 
change of the area of a β-TT is a few percents of the total outer surface of the 
corresponding tubulin dimer plus the surface of α-TT. Inasmuch the peak value of 
vn in vivo is of the order of 0.1 Volt, the condition (40.a) is fulfilled, for example if 
b = 0.5. 

We now pay more attention on the role of NPs in the context of negative 
incremental resistance (conductance). Eisenberg’s group [8, 9] examined a single 
asymmetric NP system whose rectifying properties for ionic current are changed 
dramatically by addition of a millimolar concentration of calcium ions. The 
voltage-current function for such NPs exhibits negative incremental resistance for a 
particular domain of negative voltage across NP, qualitatively represented on Fig. 8 
(segment CC’). 

 

Fig. 8 – The qualitative shape of current-
voltage characteristics for NPs in the context
of Eisenberg’s group’s work [8, 9]. The 
segment CC’ shows the negative incremental

resistance. 
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The value of vc, from Fig. 8, is defined by the structural features of the NP and by 
the calcium concentration [9]. We are aware that above experiment is far for being 
adequate for the description of current voltage function for NPs in MT. But some 
general features could probably hold even for these geometrically and chemically 
more complex dynamical natural structures. In order take into account dynamic 
character of conductive properties of NPs in MT we here use the negative 
conductance of NP to be voltage dependent in a dynamic way as follows:   

 0
d

1 ,
d
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v
G G

t
 

= − − γ 
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with γ being appropriate small parameter providing the inequality 
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Thus (41) involves an additional nonlinearity of this system. 

2.1. The Model of a MT as Nonlinear Transmission Line 

We could now consider a long transmission-line (or ladder networks) 
composed of lumped sections equal to introduced ER’s. A typical section scheme 
is shown in Fig. 9. The length of an ER is ∆ = 8 nm is being equal to the length of a 
tubulin dimmer, Fig 5a. The longitudinal current consists of the series of 
inductance Ln, which is so small to be safely ignored, and ohmic resistance Rn for 
IC in an ER as being estimated in Eq. (39). The nonlinear capacity Cn is in parallel 
with total conductance Gn of all 13 NPs consisted in ER. 

 

 
Fig. 9 – An effective circuit diagram for the n-th ER with characteristic elements  

for Kirchhoff’s laws. 
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Applying Kirchhoff’s law to the considered ladder, envisaged as the coupled 
electrical circuits, we write down 
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  (42) 

 1 .n n n nv v R i− − =  (43) 

The important point here is the facts that Ln could be discarded. Inserting (40) and 
(44) in (42) one gets 
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It is very convenient to establish the characteristic reactive impedance of an ER in 
a natural way: 
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It enables us to introduce the new auxiliary function, u(x, t), unifying voltage and 
current as follows 

 1/ 2 1/ 2 .n n nu Z i Z v−= =  (47) 

Based on the fact that the above functions change gradually from a given ER 
to its neighbours it is justified to expand un in a continuum approximation using a 
Taylor series in term of a small spatial parameter ∆ (the length of an ER): 
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By using (44–48), we now have 
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Combining last two equations and ignoring small terms beyond the order of ∆3, we 
get 
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The important step in our model is the assumption that the ohmic resistance, 
R0, should be balanced by the negative incremental conductance, –G0, thus 
discarding the third term in (51) 

 ( )1
0 0 0.R Z G Z− − =   (52) 

Similarly, as in the case of water waves, we should go over to dimensionless 
variables. Let us first estimate the characteristic scales of length and time. The 
length of an ER (∆ = 8 nm) is such length. The characteristic time could be the 
period of charging (discharging) of ER capacitor through the resistance R0, 

 0 0 .R Cτ =   (53) 

Taking the numerical values from (37) and (39) we have 
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Thus, the characteristic velocity of spreading the ionic wave along the ladder could 
be estimated as 
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It is now convenient to use the progressive traveling-wave form as follows: 
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with dimensionless speed, s. Introducing the new dimensionless space-time 
variable, ξ 

 ,x tsξ = −
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one has 
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It enables us to get rid of partial differential equation (51) yielding the ordinary one 
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If we use the definition (47), u = Z1/2i, and introduce the dimensionless current 

 0/ ,W i i=  (60) 

with i0 being the peak value, we have 

 1/ 2 1/ 2
0 .u Z i W Z i= =   (61) 

Replacing (61) into (62) we get 
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Performing first integration yields: 
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Comparing (62) with (21) we can use the same abbreviations 
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We here also use the conditions β = 0, leading to the velocity of ionic current 
defined as 
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This is very interesting intermediate value of biological speed. For example, the 
speed of ionic diffusion waves in cell is of the order of 10-3 cm/s, while the speed 
of action potential in nerve cell ranges 3×103 cm/s. We could finally estimate the 
term γG0. From (41) it is possible to average the derivative 5/ 0.1/ 10nv t∂ ∂ ≈ τ ≈ . 
This implies an inequality 610−γ <  in order to obey (41.a). Otherwise from (52) we 
estimate G0 = 4×10-8 S. 

Thus, (63) now reads 
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Making the next integration of (67) one obtains 
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This is the same equation as was (24). The remaining formal procedure is already 
given by set of equations (25-35), yielding 
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Fig. 10 – The shape of ionic current nano-soliton along a microtubule given for fixed time. 

We will now examine the two options of solution of (69). First is the case 
while the term bC0 dominates over the NP nonlinearity γG0, where we have the 
reductions to the form (Fig. 10) 
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where ei (i = 1, 2, 3) are the roots of cubic equation: 
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and which we will call ionic nano-soliton (INS). Taking b = 0.1 V-1, Z = 1.6×108 Ω 
and choosing that i0 has the order of 10-9 A, for appropriate integration constants 
one gets the following cubic equation 

 3 6 93 10 2 10 0,e e− −− × + × =  (72) 

with corresponding roots: 

 3 3
1 2 310 ;     2 10 .e e e− −= = = − ×  (73) 

It brings about the width of INS to be of the order of 20 ERs. Numerical solution of 
this case obtained with the aid of Matlab is shown in Fig. 11. 
 

 
Fig. 11 – Numerical solution of INS along microtubules for b = 0.1 V-1 and i0 = 10-9 A.  

Second option is more realistic while two nonlinearities are competitive. It 
causes the increase of INS amplitude and brings it more localized. We could 
comment how the value of frequency ω may influence this competition. If voltage 
frequency ω changes, the static part of conductivity G0 also changes through (46, 53)  

 0 2 2
0 0 02

.
R

G R C
Z

= = ω  (74)  

This in order to get γG0 as being competitive with bC0, ω should be of the order of 
103 s-1.   
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3. CONCLUSIONS AND DISCUSSION 

In this paper we have shown how two very different physical phenomena can 
be described by formally the same mathematical model exhibiting the common 
features which leads to existence of the permanent profile bell-shaped soliton 
solutions. 

It results from equilibrium between two effects, the nonlinearity that tends to 
localize the wave, while dispersion spreads it out. The origins of respective 
nonlinearities are quite different. In the case of water waves the nonlinearity 
originates from kinetic energy, contained in Euler’s equation (2). In the other hand, 
the potential energy of ionic wave within INS along MTs captures nonlinearity 
from biophysical properties enabling the change of ER capacity and NPs 
conductivity according to equations (40, 41). 

We here paid more attention to the INSs along MTs due to the importance of 
this subtle phenomenon in better understanding of basic neuronal functions, 
including learning and memory processes. 

Our present model offers the satisfactory results regarding orders of 
magnitude of ionic current, speed of pertaining INSs in the context of still scarce 
available experimental evidences. 

We especially mention an interesting experimental assay performed by the 
group led by Tuszynski [11]. They have calculated that electrical amplification of 
ionic currents by MTs is in some sense equivalent to their ability to act as 
biomolecular living transistors. In that respect the current of ions pumped by NPs 
in negative resistance regime, equation (52), is expected to play the control role, as 
well as the base current does play in silicon bipolar transistor. 
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