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Abstract. The thermodynamics of a planar array of Ginzburg-Landau chains
with nn and nnn interaction is obtained analytically. The interaction term is treated
exactly, while the quartic on-site potential is considered in a mean-field approxima-
tion. The free energy is expressed in terms of an Appell function. The specific heat
can be calculated exactly, its singular term being proportional with the complete ellip-
tic integral of first kind. It has a logarithmic singularity - the fingerprint of the Ising
universality class. The equivalence of the ψ4 models with Ising models is analyzed and
its possible applications in microemulsions and adsorbtion of atoms on crystal surfaces
are briefly discussed.

1. INTRODUCTION

The largest part of theoretical models used in solid state physics consider that
the interaction of their constituents occurs only between nearest neighbors. The se-
minal paper of Montroll [1], where the transfer matrix concept was firstly introduced
in physics, puts in a mathematical form the fact that, in a perfect crystal, the interac-
tion is transferred from an atom to the next one (for an 1D system), from a row of
atoms to the next one (for a 2D system), or from a plane to the next one (for a 3D
system). The same concept was independently introduced by Kramers and Wannier
[2, 3], and it was one of the ways of attack used by Onsager in order to find his
celebrated solution of the Ising model [4].

With the renormalization group theory [5], it became largely accepted that,
for the critical properties of a system, the inclusion of the more distant neighbors
in the interaction potential is a ”detail” which does not change its critical behavior
[6]. However, for a more precise description of the thermodynamics of various solids
and liquids, a more careful consideration of the inter-particle interaction could be
essential.

This issue is more important for liquids, especially for liquid mixtures and
microemulsions [7]; however, the model considered in the theory of microemulsions
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is not a conventional liquid, but an Ising model, with next-nearest-neighbor (nnn)
interaction. This model is not exactly soluble - like any model going beyond the
variant worked out by Onsager - but some interesting results could be obtained [8,
9]. Interesting applications of Ising model in the study of phase diagram of binary
and ternary solutions have been obtained by Lungu, Buzatu and coworkers [10, 11].
Due to the equivalence between Ising models and anisotropic ψ4 models, at the level
of the statistical sum [12], the results obtained for the ψ4 models can be transferred
to the Ising model, and vice-versa.

In this paper, we shall investigate the thermodynamics of ψ4 models, namely
of a planar array of Ginzburg-Landau chains, for the case of a nearest-neighbor
(nn) and a next-nearest-neighbor (nnn) interaction. We shall consider the so-called
pseudo-ferro-magnetic case, when the nn and nnn interaction are both attractive. The
pseudo-anti-ferromagnetic case has been analyzed elsewhere [13]. We shall obtain
an analytic result, which can be transfered to the Ising models. We shall evaluate the
free energy of the planar arrays of Ginzburg-Landau chains using the transfer matrix
method, i.e. calculating the ground state energy of a chain of quantum anharmonic
oscillators; this is the dual of the classical 2D system. We shall use a Green function
method, which has a simple form for bilinear Hamiltonians; the price paid for this is
the fact that the anharmonicities of the on-site oscillator have to be treated in a mean
field approximation. However, the interaction part is treated exactly. In this way, we
obtain the free energy of the 2D system (the ψ4 model) and its specific heat, which
has a logarithmic singularity. This is the fingerprint of the Ising universality class,
to which the ψ4 model belongs. The equation for the critical temperature is also
obtained. The relevance of this results for equivalent models, mainly for 2D Ising
models, is discussed in detail.

2. THE PLANAR ARRAY OF CHAINS AND ITS DUAL

The system to be studied in this paper is a continuous variant of a model of
a parallel array of chains of anharmonic classical oscillators. If ψj (x) is the order
parameter along the chain j, the Ginzburg-Landau functional of the model has the
form

FGL [ψ] =

N∑
j=1

∫ L

0

dx

ξ0
×

×

[
aψ2

j + bψ4
j + c

(
dψj
dx

)2

+ c1 (ψj+1−ψj)2 + c2 (ψj+2−ψj)2
]

(1)
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The field ψj is supposed to be real and to satisfy cyclic boundary conditions, ψj (x) =
ψj+N (x) . The parameters a,b,c,ξ0 have their usual significance, see for instance
[14, 15] for details. The constants c1, c2 denote the nn and nnn interchain interaction,
respectively.

Using the approach of Scalapino, Sears and Ferrell [16], we shall transform
the classical statistical problem for (1) to a quantum mechanical problem of its dual
system, a chain of quantum anharmonic oscillators, described by the Hamiltonian:

H =
N∑
j=1

[
− 1

2m

∂2

∂ψ2
j

+aψ2
j + bψ4

j + c1 (ψj+1−ψj)2 + c2 (ψj+2−ψj)2
]

(2)

The ”mass” in (2) is temperature-dependent

m=
2a′

k2BT
2
, a′ = a+ c1 + c2 (3)

As demonstrated in [16], the free energy of the 2D system of classical oscil-
lators is equal to the ground state energy of the 1D system of quantum oscillators.
Our immediate goal will be to evaluate this ground state energy, as a first step for
obtaining the free energy of (1).

It is convenient to scale the Hamiltonian (2) to a simpler one

Hnnn =

N∑
j=1

[
− 1

2m

∂2

∂ψ2
j

+aψ2
j + bψ4

j + c1 (ψj+1−ψj)2 + c2 (ψj+2−ψj)2
]

=
N∑
j=1

[
− 1

2m

∂2

∂ψ2
j

+a1ψ
2
j + bψ4

j −2c1ψjψj+1−2c2ψjψj+2

]
, (4)

with

a1 = a+ c1 + c2. (5)

We shall consider that the mass is temperature-dependent, that a1, c1, c2 > 0.
With a scaling given by

ψj = αϕj (6)

and choosing

α2 = (2m |a1|)−1/2 , mα2 =

(
m

2 |a1|

)1/2

(7)

the Hamiltonian can be written as

H =

(
m

2 |a1|

)
1/2

N∑
j=1

(
−1

2

∂2

∂ϕ2
j

+
1

2
σϕ2

j + b1ϕ
4
j − c′1ϕjϕj+1− c′2ϕjϕj+2

)
, (8)
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where

σ = sign(a1) , b1 =
b

23/2m1/2 |a1|3/2
, c′1 =

c1
|a1|

, c′2 =
c2
|a1|

. (9)

Splitting the scaled Hamiltonian into an on-site and an interacting term

Hσ =

N∑
j=1

(
−1

2

∂2

∂ϕ2
j

+
1

2
σϕ2

j + b1ϕ
4
j − c′1ϕjϕj+1− c′2ϕjϕj+2

)
=Hσ,on site+Hσ,int,

(10)

Hσ,on site =
N∑
j=1

(
−1

2

∂2

∂ϕ2
j

+
1

2
σϕ2

j + b1ϕ
4
j

)
, (11)

Hσ,int =−
N∑
j=1

(
c′1ϕjϕj+1 + c′2ϕjϕj+2

)
(12)

and taking the Fourier transform of the interaction, according to the formulas

Dk =
∑
j

Dije
−ik(Ri−Rj) =

∑
J

DJe
−ikaJ (13)

DJ =−c′1 (δJ,1 + δJ,−1)− c′2 (δJ,2 + δJ,−2) , (14)
we get

Dk =−2c′1 coska−2c′2 cos2ka. (15)
Replacing the anharmonic term in the on-site Hamiltonian by x2

〈
x2
〉
, the full Hamil-

tonian is quadratic and we can use a Green function approach in order to calculate
the ground state energy [17]:∑

k

√
Ω2
0 +Dk =

∑
k

√
Ω2
0−2c′1 coska−2c′2 cos2ka. (16)

In the continuum limit, it is proportional to the integral:

I (A,B) =

∫ π

0

√
1−Acosx−B cos2xdx, (17)

with

A=
2c′1
Ω2
0

> 0, B =
2c′2
Ω2
0

≷ 0. (18)

The integrand
f (x) = 1−Acosx−B cos2x (19)

can be written as

P (s) =−8Bs2 + 2(A+ 4B)s+ 1−A−B, (20)
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where

s= sin2 x

2
. (21)

It is easy to see that the radical is real if

−
√

2 6A6
√

2 ; −1 6B 6 1. (22)

We can write

P (s) = P (s) = 8B (s+ |s−|)(s+−s) > 0, s+ > 1, B > 0, (23)

where

s± =
(A+ 4B)±

√
8B+A2 + 8B2

8B
. (24)

The integral is real for the ”ferromagnetic” case, B > 0. Putting

s+ =
1

k21
, |s−|=

1

k22
, (25)

we have

P (s) = 8B

(
s+

1

k22

)(
1

k21
−s
)

=
8B

k21k
2
2

(
1−k21s

)(
1 +k22s

)
> 0. (26)

We have to evaluate the integral

I (A,B) =
2
√

2B

k1k2

∫ 1

0

√(
1−k21s

)(
1 +k22s

)
s(1−s)

ds (27)

We shall adapt the formula∫ 1

0
xλ−1

(
1−xµ−1

)
(1−ux)−ρ (1−vx)−σ dx=

=B (λ,µ)F1 (λ,ρ,σ,λ+µ;u,v) (28)

to our case

λ= µ=
1

2
,ρ=−1

2
,σ =−1

2
,u= k21,v =−k22. (29)

The result is∫ 1

0

√(
1−k21s

)(
1 +k22s

)
s(1−s)

ds= πF1

(
1

2
,−1

2
,−1

2
,1;k21,−k22

)
, (30)

where F1 is the Appell function:

F1 (λ,ρ,σ,λ+µ;u,v) =
∑
m,n

(λ)m+n (ρ)m (σ)n
(λ+µ)m+nm!n!

xmyn. (31)

(c) RRP 63(4) 1038–1047 2011



6 Thermodynamics of a planar array of Ginzburg-Landau chains 1043

Consequently,

I (A,B) =
2π
√

2B

k1k2
F1

(
1

2
,−1

2
,−1

2
,1;k21,−k22

)
(32)

The Appell function can be reduced to a Gaussian hypergeometric function if:

ρ+σ = λ+µ. (33)

In our case,
ρ+σ =−1, λ+µ= 1, (34)

so the sum ρ+σ should increase with 2 in order to fulfill this condition.
Finally, we get for the ground state energy (GSE) of the Hamiltonian (2):

GSE =
L

2

(
2m

Ω2
0 (a+ c1 + c2)−2c1−2c2

a+ c1 + c2

)1/2

F1

(
1

2
,−1

2
,−1

2
,1;k21,−k22

)
,

s+ =
1

k21
, |s−|=

1

k22

(35)

supposing that the condition

a+ c1 + c2 = a1 > 0 (36)

is fulfilled. The energy of the on-site Hamiltonian can be written in the harmonic
approximation as [14]:

Ω2
0 = 1 +

λ

ω (λ)
, (37)

where ω (λ) is the real root of the following cubic equation:

ω3−σaω−6λ= 0. (38)

3. THE SPECIFIC HEAT

As the specific heat is essentially the second derivative of the free energy F of
the 2D system,

C =−T ∂
2F

∂T 2

and F = GSE, it can be calculated from the second derivatives of the Appell func-
tions. Using the formula ([18], eq. 07.36.20.0009.01)

∂n

∂zn1
zn+b1−11 F1 (a;b1, b2;c;z1,z2) = (b1)n z

b1−1
1 F1 (a;n+ b1, b2;c;z1,z2) (39)

and ([18], eq. 07.36.20.0010.01)

∂n

∂zn2
zn+b2−12 F1 (a;b1, b2;c;z1,z2) = (b2)n z

b2−1
2 F1 (a;b1,n+ b2;c;z1,z2) (40)
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for n= 2

∂2

∂z21
zb1+1
1 F1 (a;b1, b2;c;z1,z2) = b1 (b1 + 1)zb1−11 F1 (a;2 + b1, b2;c;z1,z2) (41)

∂2

∂z22
zb2+1
2 F1 (a;b1, b2;c;z1,z2) = b2 (b2 + 1)zb1−12 F1 (a;b1,2 + b2;c;z1,z2) (42)

and a= 1
2 ; b1 =−1

2 , b2 =−1
2 ; c= 1

∂2

∂z21
z
1/2
1 F1

(
1

2
;−1

2
,−1

2
;1;z1,z2

)
=−z

−3/2
1

4
F1

(
1

2
;
3

2
,−1

2
;1;z1,z2

)
, (43)

∂2

∂z22
z
1/2
2 F1

(
1

2
;−1

2
,−1

2
;1;z1,z2

)
=−z

−3/2
2

4
F1

(
1

2
;−1

2
,
3

2
;1;z1,z2

)
, (44)

we obtain two reducible F1 functions ([18], eq. 07.36.03.0006.01)

F1 (a;b1, b2;b1 + b2;z1,z2) = (1−z2)−a 2F1

(
a,b1;b1 + b2;

z1−z2
1−z2

)
(45)

or, for symmetry reasons, ([18], eq. 07.36.04.0004.01)

F1 (a;b1, b2;c;z1,z2) = F1 (a;b2, b1;c;z2,z1) , (46)

which leads to an equivalent formula

F1 (a;b2, b1;c;z2,z1) = (1−z1)−a 2F1

(
a,b2;b1 + b2;

z2−z1
1−z1

)
. (47)

So

F1

(
1

2
;
3

2
,−1

2
;1;z1,z2

)
= (1−z2)−1/2 2F1

(
1

2
,
3

2
;1;

z1−z2
1−z2

)
(48)

and

F1

(
1

2
;−1

2
,
3

2
;1;z1,z2

)
= (1−z2)−1/2 2F1

(
1

2
;−1

2
;1;

z1−z2
1−z2

)
. (49)

Using again a symmetry property:

F1

(
1

2
;
3

2
,−1

2
;1;z1,z2

)
= F1

(
1

2
;−1

2
,
3

2
;1;z2,z1

)
(50)

we can express the reduced form of F1 in terms of 2F1

(
1
2 ;−1

2 ;1; z1−z21−z2

)
only. We

have ([18], eq. 07.23.03.0112.01)

2F1 (a,1−a;c;z) = (1−z)(c−1)/2 z−(c−1)/2Γ(c)P 1−c
−a (1−2z) . (51)

For a= 1/2, c= 1, this gives

2F1

(
1

2
;−1

2
;1;z

)
= P−1/2 (1−2z) (52)
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In our notations,

2F1

(
1

2
;−1

2
;1;

z1−z2
1−z2

)
= P−1/2

(
1−2z1 +z2

1−z2

)
. (53)

The Legendre function can be expressed in terms of the complete elliptic inte-
gral of first kind:

P−1/2 (x) =
2

π

√
2

x+ 1
K

(√
x−1

x+ 1

)
, (54)

which has a logarithmic singularity when its argument equals 1. This means that the
specific heat has a logarithmic singularity at the transition point Tc, which can be
determined from the equation

2z1−z2 = 1. (55)

Comparing the present case (c2 > 0) with the pseudo-anti-ferromagnetic case
(c2 < 0), studied in [13], we can notice that the pseudo-ferromagnetic one is more
complex mathematically, as, for c2 < 0 the free energy is expressed in terms of com-
plete elliptic integrals of first, second and third kind, which are much simpler than
the Appell function.

4. THE 2D ISING MODEL WITH nnn INTERACTION

All the attempts of finding an exact solution of the Ising model beyond the
limits of the Onsager variant have failed. Neither the introduction of an external
field, nor a nnn interaction in the model could not be exactly described. However,
interesting analytic results have been obtained by Fan and Wu [8], Grynberg and
Tanatar [9], Lungu and Buzatu [10], [11]. The model has been investigated with
Monte Carlo simulations by Aguilera-Granja et al. [19, 20] and Lee [21]. Finite-
size effect have been evaluated by Zandvliet [22], in a controversial paper; see also
[23]. Studying the adsorbtion of Hydrogen on Pd(100), Binder and Landau [24]
considered a lattice gas and an Ising model with three-body interaction, nn repulsion
and nnn interaction. Widom [7] used several variants of the Ising model in order
to describe the behavior of microemulsions, one of the most investigated being the
ANNNI (anisotropic next-nearest-neighbor Ising) model.

The equivalence, at the level of partition sums, between ψ4 models and Ising
models [12] can be used in order to transfer results from a class of models to an-
other one. For a ψ4 models with a quadratic term proportional to A, a quartic one
proportional to B and an interaction term of the form

Vint =
∑
l,m

c(l,m)
xy u(l)x u

(m)
y , (56)
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where u(l)α means the displacement of an atom belonging to the l− th wire in the α
direction, this equivalence means

lim
A→∞,A/B=−1

Z
(
ψ4
)

= Z (Ising) =
∑
{σl

x}

∑
{σm

y }
exp

−β∑
l,m

c(l,m)
xy σlxσ

m
y

, σmx,y=±1. (57)

So, in this way, Ising models with arbitrary long interactions between spins are sta-
tistically equivalent with anharmonic solids with very deep on-site potentials. The
consequences of this equivalence will be studied in a future work.

5. CONCLUSIONS

A planar array of Ginzburg-Landau chains with attractive nn and nnn interac-
tion (the so-called pseudo-ferromagnetic case) has been studied using the transfer
matrix method. The ground state energy of its dual system, an chain of quantum
anharmonic oscillators interacting through elastic forces, has been evaluated using a
Green function method. In order to avoid an infinite hierarchy of Green functions, the
quartic term of the on-site Hamiltonian was treated in a mean field approximation.
The ground state energy of the 1D system, and the free energy of the 2D one, have
been obtained, in terms of an Appell function. The specific heat, which is mainly the
second derivative of the Appell function, corresponds to a case when this function
can be reduced to a Gaussian one, and, further one, to a complete elliptic integral of
first kind. Its logarithmic singularity is the fingerprint of the Ising universality class,
to whom the ψ4 model belongs. This investigation completes the understanding of
a 2D Ginzburg-Landau system with nnn interactions, as the present paper is devoted
to the pseudo-ferromagnetic case, and the situation of the pseudo-anti-ferromagnetic
case had been studied previously.

In fact, the Ising model is equivalent to ψ4 models with very deep on-site two-
well potentials, and this equivalence, which holds at the level of the statistical sums,
can be exploited in order to transfer results from a model to another. Possible appli-
cations to the physics of microemulsions and adsorbtion of atoms on crystal surfaces
are briefly discussed.
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