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Abstract. This paper studies the chiral nonlinear Schrödinger's equation with Bohm 
potential. There are two approaches that are used to carry out the integration of the 
governing equation. They are the /'G G  method and the exp-function method. Finally the 
traveling wave hypothesis is used to obtain solution in terms of doubly periodic function 
where in the limiting case topological soliton solutions are retrieved.  
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1. INTRODUCTION 

The study of chiral soliton has been going on for the past few decades [1-10]. 
These chiral solitons appear in Quantum Mechanics, particularly in the area of 
Quantum Hall Effect. The governing equation is the chiral nonlinear Schrödinger's 
equation (CNLSE). This equation was studied earlier. The traveling wave solution 
was obtained for this equation in 1998 and both bright and dark soliton solutions are 
obtained [9]. 

Later, the Bohm potential was introduced in 2004 [8]. Subsequently, several 
studies were done with the so called perturbed CNLSE where the Bohm potential 
was treated as the perturbation term. The soliton perturbation theory was applied to 
obtain the adiabatic dynamics of soliton parameters. Later, the several integrability 
techniques were applied to integrate the perturbed CNLSE. These include the 
semi-inverse variational method, Lie symmetry analysis as well as as the traveling 
wave hypothesis. Recently, the generalized form of the CNLSE was also studied in 
2011 [3] where the ansatz method was used to carry out the integration of the 
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generalized CNLSE. In this paper, the conserved quantities were also studied using 
the multiplier approach [3].  

In this paper, there will be two more methods of integrability will be applied to 
integrate the perturbed CNLSE. They are the /'G G  method as well as the 
exp-function method. Finally, the snoidal wave solution will also be obtained along 
with its limiting case that leads to the shock wave solution. 

2. GOVERNING EQUATIONS 

The dimensionless form of the perturbed CNLSE that is going to be studied in 
this paper is given by [1-3, 7, 8]  

 ( )i i = i .xx
t xx x x

q
q aq b qq q q q q

q
∗ ∗+ + − α  (1) 

In (1), on the left-hand side, the first term represents the evolution term which 
governs time evolution of the wave profile, while a  is the coefficient of dispersion 
and the coefficient of b  is the derivative coupling and b  is known as nonlinear 
coupling constant. This term changes sign under the parity, x x→− . It is due to this 
property, (1) is known as the chiral NLSE. This kind of nonlinearity is also known as 
the current density.  

On right-hand side of (1), the coefficient of α  is called the Bohm potential, 
also known as the internal self-potential that was introduced by de Broglie and 
explored by Bohm to introduce the hidden variable theory [8]. Therefore, it produces 
quantum behavior so that all quantum features are related to its special properties.  

In the following three sections, the integration of the perturbed CNLSE will be 
studied. The techniques of integrability that will be utilized are the /'G G  method, 
exp-method and the traveling wave hypothesis. These are respectively going to be 
studied in the following sections. 

3. 'G /G  METHOD 

In this section, the /'G G  method will be used to carry out the integration of the 
CNLSE with Bohm potential. The method integrability will first be described and 
then subsequently it will be applied to integrate the CNLSE with Bohm potential. 

3.1. DESCRIPTION OF THE METHOD 

The objective of this section is to outline the use of the /'G G -expansion 
method for solving certain nonlinear partial differential equations (PDEs). A 
nonlinear PDE  
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 ( , , , , , ) = 0x t xx xt ttP q q q q q q  (2) 

using wave transformation  

 ( , ) = ( ), = ( ),q x t Q B x vtξ ξ −  (3) 

can be converted to  

 2 2 2 2( , , , , , , ) = 0.P Q BQ vBQ B Q vB Q v B Q′ ′ ′′ ′′ ′′− −  (4) 

Let the solution of eq. (4) can be expressed by a polynomial in G
G
′

 as follows:  

 
=0

( ) = ( ) , 0,
m

l
ml

l

GQ a a
G
′

ξ ≠∑  (5) 

 where , = 0,1, ,
l

a l m  are constants to be determined later and ( )G ξ  satisfies the 
second order linear ordinary differential equation (LODE):  

 
2

2

d ( ) d ( ) ( ) = 0.
d d
G G Gξ ξ

+ λ + µ ξ
ξ ξ

 (6) 

where λ  and µ  are arbitrary constants. The positive integer m in (5) can be 
determined by considering the homogeneous balance the highest order derivatives 
and highest order nonlinear appearing in ODE (4). Substituting eq. (5)  along with 
eq. (6)  into eq. (4) , collecting all terms with the same power of /'G G  together, the 
left-hand side of eq. (4)  is converted into another polynomial in /'G G . Equating 
each coefficient of this polynomial to zero, yields a set of algebraic equations for 

0 , ..., , ,ma a vλ  and µ  by using Maple. Assuming that the unknown constants can be 
obtained by solving the algebraic equations. Since the general solutions of the 
second order LODE (6)  have been well known for us, then substituting 0 ,..., ,ma a v  
and general solutions of eq. (4)  into (5)  we have more traveling wave solutions of 
the nonlinear evolution equation (2) . 

3.2. APPLICATION TO CNLSE 

The CNLSE with Bohm given by (1) is going to be studied with the initial 
condition  

 i( )( , 0) = ( )e xq x g x −κ +θ  

and boundary condition  

 | ( , ) | 0 | | .q x t as x→ →±∞  
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Substituting  

 i( )( , ) = ( )e x tq x t g x vt −κ +ω +θ−  (7) 

into (1) and decomposing into real and imaginary parts respectively yields  

 ( )2 32 = 0g a g g g′′ω − − κ + λκ  (8) 

and  

 ( 2 ) = 0,g v ak g′ ′′+ + α  (9) 

where the function g  represents the soliton shape and v  is the velocity of the 
soliton. From the phase component, κ  is the soliton frequency, ω  is the soliton 
wave number, while θ  is the phase constant and 2 2= d /d , = d /dg g s g g s′ ′′ , with 

=s x vt− . 
It needs to be noted that equations (8)  and (9)  are to be solved together in 

order to integrate (1) . From (9) , it is possible to obtain  

 2( , ) = exp .
2

v akg x t
v ak

 α +   − −    + α    
 (10) 

From (10) , it is possible to determine the velocity of the soliton by solving for v  in 
terms of the remaining parameters, where the soliton expression for the function g  
is given later in (12) . Now, multiplying (8)  by g ′  and integrating, yields  

 2 2 4 2( ) ( ) = ,ak g kg a g h′ω + + λ −  (11) 

where h  is the constant of integration. 
Balancing 4g  and ( )2g ′  in (11)  gives  

 4 = 2 2m m +  

so that  
 = 1.m  

Suppose that the solutions of (11)  can be expressed by a polynomial in /'G G  as 
follows:  

 0 1 1( ) = ( ), 0.Gg s a a a
G
′

+ ≠  (12) 

Substituting eqs. (12)  into eq. (11) , collecting the coefficients of ( )iG
G
′

 and setting 

it to zero gives a system of algebraic equations that solving it with Maple gives the 
following solutions.  
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0 2

1

= , = ,
2
a aa k

ba
λ

  

 
8 2 4 4 2 3 6
1 1

6 4
1

2
= ,

4
a b a b a a

h
aa b

ω + ω +
−

 (13) 

 
4 2 4 2 2 3
1 1

2 4
1

2 2
= .

4
a b a ab a

b a a
ω + λ +

µ  

where , ,a b ω  and λ  are arbitrary constants. 
Substituting eqs. (13)  and general solution of eq. (6)  into eq. (12)  we have 

three types of traveling wave solutions of the CNLSE as follows: 

– when 
4 2 3
12

4 2
1

2( )
= 4 = > 0,

a b a
a ab

− ω +
∆ λ − µ   

 1 2
1

1 2

sh( ) ch( )
( ) =

ch( ) sh( )
c s c s

g s a
c s c s

β + β
β

β + β
, (14) 

where 
4 2 3
1

4 2
1

2( )1= ;
2

a b a
a ab

− ω +
α  

– when 
4 2 3
12

4 2
1

2( )
= 4 = < 0,

a wb a
a ab

− +
∆ λ − µ   

 1 2
1

1 2

sin( ) cos( )
( ) =

cos( ) sin( )
c s c s

g s a
c s c s
− β + β

β
β + β

, (15) 

where 
4 2 3
1

4 2
1

2( )1= .
2

a b a
a ab
ω +

β  

– when 
4 2 3
12

4 2
1

2( )
= 4 = = 0,

a b a
a ab

− ω +
∆ λ − µ   

 1 1

2 1

( ) = .
c a

g s
c c s+

 (16) 

4. EXP-FUNCTION METHOD 

This section will integrate the CNLSE by the exponential function method that 
is abbreviated as exp-function approach. The details are in the following subsection 
below. 
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4.1. DESCRIPTION OF THE METHOD 

The exp-function method is based on the assumption that traveling wave 
solutions of eq. (11)  can be expressed in the following form:  

 

2

= 1

4

= 3

e

( ) = ,
e

p
ns

n
n p

p
ms

m
m p

a

g s
b

−

−

∑

∑
 (17) 

where 1 2 3, , ,p p p  and 4p  are positive integers which are unknown to be further 
determined, na  and mb  are unknown constants. To determine the values of 1p  and 

3p , we balance the linear term of highest order in eq. (11)  with the highest order 
nonlinear term. Similarly to determine the values of 2p  and 4p , we balance the 
linear term of lowest order in eq. (11)  with the lowest order nonlinear term. 

4.2. APPLICATION TO CNLSE 

In this part we want to solve eq. (17) with exp-function method. Using the 
ansatz (17) for 4 ( )g s  and ( )2 ( )'g s , gives  

 ( )
2( ) 2( )1 3 2 42 1 2

4 43 4
3 4

e e
( ) = ,

e e

p p s p p s
'

p s p s

c c
g s

c c

− + +

−

+ +
+ +

 (18) 

and  

 
4 41 2

1 24
4 43 4

3 4

e e
( ) = ,

e e

p s p s

p s p s

d d
g s

d d

−

−

+ +
+ +

 (19) 

where , , =1, , 4i ic d i  are obtained easily by simple calculations. 
Balancing the highest order of exp-function in the eqs. (18) and (19) gives  

 2 4 4 2 42 2 4 = 4 4 ,p p p p p+ − −  

which leads  

 2 4= .p p  

Similarly, for determining 1p  and 3p  in eq.(17), balancing the lowest order of 
exp-function in the eqs.(18) and (8) gives  
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 1 3 3 1 32 2 4 = 4 4 ,p p p p p− − + − +  

which leads  

 1 3= .p p  

Since the final solution dose not depend on the values of 1 2 3, ,p p p  and 4p , so for 
simplicity we let 1 3= = 1p p  and 2 4= = 1p p . Therefore eq. (19) becomes  

 1 0 1

1 0 1

e e
( ) = .

e e

s s

s s

a a a
g s

b b b

−
−

−
−

+ +
+ +

 (20) 

 Substituting eq. (20) into eq. (11), and equating the coefficients of all powers of ens  
to zero yields a system of algebraic equations for 1 0 1 1 0 1, , , , , , ,a a a b b b k− − ω  and h . 
Solving the system with the Maple gives the following solutions. 

 
• First set:  

 
2 4 2 4

1 0 0 0
1 1 1 2 4

0 0

(8 )
= = 0, = , = 0, = ,

16( )
a b a b a a b

a b b h
a b a− −

− +
ω

−
 (21) 

 
2 2
0 0
2 2
0 0

= , = ,
4( ) 4

ab aa
k h

a b b−
 

where 0 1,a a  and 0b  are free parameters. 
 

• Second set:  

 1 1
1 1 0 2

0

4
= = = 0, = , = , = 0,

aa a
b b a h a k

b
−

− ω  (22) 

where 1 1,a a−  and 0b  are free parameters. 
 

• Third set:  

 1 0 0 1= = = = 0, = 4 , = 0, = 0,b b a a a k h− ω  (23) 

where 1a−  and 1b  are free parameters. 
 

• Fourth set:  

 0 0
1 1 1

1

= , = = 0, = , = 0, = 0,
a b

a b a a k h
b− − ω  (24) 
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where 10 ,ba  and 0b  are free parameters. 
 

• Fifth set:  

 
2 4 2 2 2

0 1 1
1 1 0 2 4

0

( 16 )
= = = 0, = ,

( )
a b a a b b

a a b
b a

−
−

− − +
ω  (25) 

 1 1
2
0

4
= , = 0,

( )
ab b

k h
ba

−−
 

where 1 1,b b−  and 0a  are free parameters. 
 

• Sixth set:  

 1 1 0 0= = = = 0, = 4 , = 0, = 0,a b a b a k h− ω  (26) 

where 1a  and 1b−  are free parameters. 
 

• Seventh set:  

 0 0
1 1 1

1

= = 0, = , = , = 0, = 0,
a b

a b b a k h
a−
−

ω  (27) 

where 0 1,a a−  and 0b  are free parameters. 
 

• Eighth set:  

 
2 4 2 4

1 1 1 1
0 0 1 2 4

1 1

(2 )
= = 0, = , = ,

( )
a b a b a a b

a b b
a b a

− − −

− −

− − +
ω  (28) 

 
2 2
1 1

2 2
1 1

= , = ,
( )
ab aa

k h
ba b

− −

− −

−
 

where 1 1,a a−  and 1b−  are free parameters. 
 

• Ninth set:  

 
2 2 2 2 2 2 2 2
0 1 0 1 0 1 0 1

1 12 2
1 1 1 1

( ) ( )
= , = ,

4( ) 4( )
a b b a a b b a

a b
a b a b

− − − −

− − − −

− −
−

 (29) 

 
2 4 2 4 2 2

1 1 1 1
2 4 2 2

1 1 1

(8 )
= , = , = ,

16( ) 4( ) 4
a b a a b ab aa

k h
b a ba b

− − − −

− − −

+
ω

− −
 

where 1 1,a b− −  and 0b  are free parameters. 
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5. TRAVELING WAVE HYPOTHESIS 

The starting point for this section is equation (11) which is the corresponding 
ODE corresponding to the traveling wave hypothesis. Now (11) can be re-written as  

 ( )2 4 2
1 2 3= ,'g a g a g a+ +  (30) 

where  

 1 =a
a
λκ , (31) 

 
2

2 = aa
a

ω + κ  (32) 

and  

 3 = .ha
a

−  (33) 

Suppose jg , for 1 4j≤ ≤ , are the roots of the biquadratic equation  

 4 2
1 2 3 = 0,a g a g a+ +  (34) 

then by the fundamental theorem of algebra (34) implies  

 1 1 2 3 4( )( )( )( ) = 0.a g g g g g g g g− − − −  (35) 

Introducing the transformation  

 
2

2 1 4 1 2 4
2

1 4 2 4

( ) ( )
=

( ) ( )
g g g w g g g

g
g g w g g

− − −
− − −

 (36) 

the corresponding ODE for w  is  

 ( ) ( ) ( )2 2 2 21 1 ,'w w k w− − −  (37) 

where  

 2 3 1 42

1 3 2 4

( )( )
=

( )( )
g g g g

k
g g g g

− −
− −

 (38) 

so that the solution of (37) is given in terms of the snoidal waves as  

 ( )1= sn ; ,w a M k  (39) 

where  
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 2 4 1 3( )( )
= .

2
g g g g

M
− −

 (40) 

Then, in the limiting case, (39) leads to  

 ( )1
1

= tanh ,lim
k

w a M
→

 (41) 

which is the shock wave solution. 

6. CONCLUSIONS 

This paper studies the chiral NLSE in presence of Bohm potential. In presence 
of this term, several mathematical tools and techniques are applied to extract several 
kinds of solution to this nonlinear evolution equation. The mathematical methods are 
exponential function method, /'G G  approach as well as the traveling wave 
hypothesis. These lead to several types of solutions including the periodic functions, 
rational solutions, snoidal waves and in its limiting case shock waves. These variety 
of solutions will be extremely useful in carrying out further analysis of the chiral 
NLSE with Bohm potential. Thus, these solutions open up a wide arena of research 
possibilities in the are of Nuclear Physics. 
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