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Abstract. This paper studies the optical solitons in birefringent fibers and DWDM 
systems in presence of log-law nonlinearity with inter-modal dispersion. The Gaussian 
ansatz is used to carry out the integration of the governing equation. The exact solutions 
are obtained and the constraint conditions, for the existence of these Gaussons, fall out 
during the course of derivation of the solution. A brief discussion on Thirring solitons is 
also included. 
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1. INTRODUCTION 

Optical solitons is one of the major areas of research in the area of nonlinear 
fiber optics [1–20]. A lot of studies has been going on in the context of birefringent 
fibers as well as in the area of dense wavelength division multiplexed (DWDM) 
systems. It is interesting to note that most of these studies are being made with Kerr 
and other laws of nonlinearity. Surprisingly, there are very few papers that are 
published for birefringent fibers and DWDM systems with log law nonlinearity. 
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There are advantages of studying the optical solitons with log law nonlinearity. In 
this case, solitons are free from radiations and therefore there is no energy shedding 
during pulse transmission through optical fibers [1–6]. This paper will address this 
issue and an exact Gaussian soliton solution, or Gausson in birefringent fibers and 
DWDM systems. There will be several constraint conditions that will fall out 
during the course of derivation of the exact solutions. These constraint conditions 
must hold in order for the Gaussons to exist. 

2. BIREFRINGENT FIBERS 

An ideal circular-core fiber supports simultaneously supports one 
polarization mode which consists of two orthogonal polarization modes. However, 
optical fibers that are employed in modern optical communication systems are not 
perfectly circularly symmetric. This asymmetry introduces small refractive index 
differences for two polarization states known as birefringence. Due to this effect, 
one polarization mode will travel faster than the other and this phenomena is 
known as differential group delay.  

Polarization mode dispersion (PMD) becomes very significant in high bit rate 
ultra long-haul optical communication systems that operate at bit rates in excess of 
5 Gbps. In such systems PMD needs to be compensated by introducing certain 
degree of birefringence which will nullify the effect of PMD over transmission 
length. PMD compensation is an useful technique for error-free transmission 
through long-haul and metropolitan area networks at bit rates higher than 10 Gbps. 

In soliton transmission systems, random birefringence causes solitons to 
generate dispersive waves, that degrade the transmission performance. Dispersive 
wave cause solitons to continuously lose energy, and thus induces pulse 
broadening. Additionally, these dispersive waves interact with other soliton pulses 
and cause distortion of a sequence of pulses.  

One can overcome the problem with birefringence by using a polarization 
maintaining fiber which is a fiber with strong built-in birefringence, also known as 
high birefringence fiber, or single polarization mode fiber. Polarization of light 
launched into the fiber is aligned with one of the birefringent axes and this 
polarization state remains preserved even if the fiber is bent. The physical principle 
behind this can be understood in terms of coherent mode coupling. The 
propagation constants of the two polarization modes are different due to strong 
birefringence, so that the relative phase of such co-propagating modes rapidly drift 
away. Therefore, any disturbance along the fiber can effectively couple both modes 
only if it has significant spatial Fourier component with a wavenumber which 
matches the difference of the propagation constants of the two polarization modes. 
If this difference is large enough, the usual disturbances in the fiber very slowly 
vary to do effective mode coupling. 
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2.1. MATHEMATİCAL ANALYSİS 

The governing equation for the propagation of Gaussons through birefringent 
optical fibers is given by the following dimensionless coupled vector NLSE [7]:  

 ( )2 2
1 1 1 1i i log log = 0,t x xxq q a q b q c r q+ α + + +  (1) 

 ( )2 2
2 2 2 2i i log log = 0.t x xxr r a r b r c q r+ α + + +  (2) 

Here in (1) and (2), ( , )q x t  and ( , )r x t  represents the wave profile of the two split 
pulses, while la , for = 1, 2l  are the group velocity dispersion coefficients, lb  
represent the coefficients of self-phase modulation (SPM) and lc  represent the 
coefficients of cross-phase modulation (XPM) and finally lα  are the coefficients of 
the inter-modal dispersion terms. The first term in (1) and (2) is the evolution term 
for the optical pulse. 

In order to solve (1) and (2), the following hypothesis are made [1–6]:  

 2i i1 1
1 1( , ) = ( , ) e = e e ,q x t P x t Aφ φ−τ  (3) 

 2i i2 2
2 2( , ) = ( , ) e = e er x t P x t Aφ φ−τ ,   (4) 

where lA  are the amplitudes of the two polarized solitons and lφ  represents the 
phase components of the two pulses. Also,  

 = ( )B x vtτ − ,  (5) 

where B  is the width of the two pulses and v  is the velocity with which the two 
polarized pulses travel. Moreover,  

 =l l l lx tφ −κ + ω + θ ,  (6) 

for = 1, 2l . Here in (6), lκ  represents the frequency of the two solitons, lω  are the 
wave numbers and lθ  are the phase constants.  

Substituting (3) and (4) reduces (1) and (2) respectively to  

 

( )

2
2

2
i 2i

2 ln 2 ln i = 0,

l l l
l l l l l l

l
l l l l l l ll

P P P
P a P

t x x

P
b P c P P i P

x

 ∂ ∂ ∂
− ω + − κ − κ + ∂ ∂ ∂ 

∂ 
+ + + α − κ ∂ 

 (7) 

for = 1, 2l  and = 3l l− . Now decomposing (7) into real and imaginary parts 
respectively gives the following pair of equations  
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 ( ) ( )
2

2 3 2
2

= 0l
l l l l l l l l l l l l ll

P
a P b P c P P a

x
∂

− ω + α κ + κ + + λ κ + +
∂

 (8) 

and  

 ( )2 = 0.l l
l l l

P P
a

t x
∂ ∂

+ α − κ
∂ ∂

 (9) 

Now from (9), using (3) and (4), gives the velocity of the Gaussons as  

 = 2l l lv aα − κ  (10) 

for = 1, 2l , while the real part given by (8) reduces to  

 
( )
( )

2 2

2 2

2 2 ln 2 ln

4 2 2 = 0.

l l l l l l l l l l

l l l

a a B b A c A

a B b c

− ω + κ + − α κ − − +

+ − − τ
 (11) 

Hence, from the linearly independent functions, after setting their respective 
coefficients to zero yields  

 ( ) ( )2 2= 2 ln ln 2l l l l l l l llb A c A a Bω + − κ + + α κ  (12) 

and  

 = .
2

l l

l

b c
B

a
+

 (13) 

Now, equating the velocities of the solitons from (10), for = 1, 2l , yields the 
constraint condition  

 ( )1 2 1 1 2 2= 2 a aα − α κ − κ  (14) 

and then equating the width of the Gaussons leads to the constraint relation  

 1 1 2 2

1 2
= .

b c b c
a a
+ +

 (15) 

Another restriction that immediately follows from (13) is given by  

 ( ) > 0l l la b c+  (16) 

for = 1, 2l . Hence finally, the Gaussons solutions in a birefringent fiber is given by 
(3) and (4) where the amplitudes lA  are arbitrary, while the width B  and the 
Gausson velocity is given by (13) and (10) which leads to the constraint conditions 
(14–16) that must hold in order for the Gaussons to exist. 
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2.1.1. Integrals of motion 

For birefringent fibers, there are at least two integrals of motion or the 
conserved quantities that are energy ( E ) and linear momentum ( M ) that are 
respectively given by [2]  

 ( ) ( )2 2 2 2
1 2

1= | | | | d =
2

E q r x A A
B

∞

−∞

π
+ +∫   (17) 

 and  

 
( ) ( )

( )

1 2

2 2
1 1 1 2 2 2

= i d

2= .

x x x xM a u u uu a v v vv x

a A a A
B

∞
∗ ∗ ∗ ∗

−∞
− + − =

π
− κ + κ

∫
 (18) 

2.2. THIRRING SOLITONS 

This is a special case of solitons in birefringent fibers when the SPM is 
negligible and hence it is discarded. Thus the governing equations in this case, with 
the SPM term eliminated and XPM term term surviving, is given by [10]  

 2
1 1 1i i log = 0,t x xxq q a q c r q+ α + +   (19) 

 2
2 2 2i i log = 0.t x xxr r a r c q r+ α + +   (20) 

Therefore, equations (19) and (20) are special cases of (1) and (2) where lb  are set 
to zero, for = 1, 2l . Hence, the Thirring Gaussons are still given by (3) and (4) 
where the velocity of the Thirring Gausson stay the same as in (10), while the wave 
numbers and the width of the solitons are given by  

 ( )2 2= 2 ln 2l l l l l llc A a Bω − κ + + α κ  (21) 

and  

 =
2

l

l

c
B

a
 (22) 

 respectively, where = 1, 2l  and = 3l l− . Hence, the constraint conditions in this 
case reduce to  

 1 2

1 2
=

c c
a a

   (23) 
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and  

 > 0l la c  (24) 

while (14) stays intact, for Thirring Gaussons. 

3. DWDM SYSTEMS 

DWDM (dense wavelength division multiplexed system) is a fiber optic 
transmission technique that allows the transmission of a variety of information over 
the optical layer. The DWDM uses dispersion-flattened fibers where the dispersion 
weakly depends on operating wavelength.  

DWDM technology is efficiently used for increasing the capacity and 
reliability of fiber optic communication systems. Unlike previous generation 
optical networks, where the information is carried by a single light beam, DWDM 
carves up large bandwidth of an optical fiber into many wavelength channels 
making spectral band use more efficient. Each of the optical carriers wavelength 
carries information individually but their spacing needs to be properly chosen to 
avoid inter-channel interference. DWDM can increase the information carrying 
capacity by about 10-100 times without the need of a new optical fiber.  

DWDM systems are also bit rate and format independent and can accept any 
combination of interference rates on the same fiber at the same time. This 
technology can be applied to different areas in the telecommunications networks, 
that includes the backbone networks, the residential access networks and also local 
area networks. 

3.1. MATHEMATICAL ANALYSIS 

For a DWDM system, the corresponding coupled dimensionless NLSE that 
dictates the propagation of solitons through log law optical fibers is given by  

  
2 2( ) ( ) ( ) ( ) ( ) ( )

1 log log = 0,
N

l l l l n l
t l x xx l ln

n l

iq i q a q b q q q
≠

  + α + + + λ 
  

∑  (25) 

where 1 l N≤ ≤ . Equation (25) is the model for bit-parallel WDM soliton 
transmission. Here lnλ  are known as the XPM coefficients. In equation (25), ( )lq  
represents the dimensionless form of the wave profile in the l th component. Also, 

lα  and lb  are the inter-modal dispersion and SPM coefficients. Finally, lnλ  are the 
XPM coefficients. Again, here in (25), the first term represents the evolution of the 
pulse in the l th channel.  

In order to solve (25), the following hypothesis is picked [1–7, 12]  
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 2i i( ) ( , ) = ( , ) e = e el l l
l lq x t P x t Aφ φ−τ , (26) 

for 1 l N≤ ≤ . Then, substituting (26) into (25) gives  

 

2
2

2
i 2i

2 ln ln i i = 0.

l l l
l l l l l l

N
l

l l ln n l l l l
n l

P P P
P a P

t x x

P
b P P P P

x≠

 ∂ ∂ ∂
− ω + − κ − κ + ∂ ∂ ∂ 

  ∂ 
+ + λ + α − κ   ∂  

∑
 (27) 

Similarly, as in the case of birefringent fibers, discussed in the previous section, 
decomposing (27) into real and imaginary parts and carrying out the analysis yields  

 = 2l l lv aα − κ  (28) 

 ( )2 2= 2 ln ln 2
N

l l l ln n l l l l
n l

b A A a B
≠

 
ω + λ − κ + + α κ 

 
∑  (29) 

and  

 = .
2

N

l ln
n l

l

b
B

a
≠

+ λ∑
 (30) 

for 1 l N≤ ≤ . Hence, these induce the constraint relations  

 1 1 1 2 2 22 = 2 = = 2 ,N N Na a aα − κ α − κ α − κ  (31) 

 
1

1 2 2
1 2 2=2, 1 =1, 2 =1,

1 1 1= = = ,
N N N

ln ln ln
n n n n n n N

b b b
a a a

−

≠ ≠ ≠

     
+ λ + λ + λ          

     
∑ ∑ ∑  (32) 

and  

 λ > 0
N

l l ln
n l

a b
≠

 + 
 

∑ ,   for 1 l N≤ ≤ . (33) 

3.1.1. Integrals of motion 

In this case also, there are at least two conservation laws, namely the energy 
( E ) and linear momentum ( M ) that are given by [2]  

 
2( ) 2

=1 =1

1= d =
2

N N
l

l
l l

E q x A
B

∞

−∞

π∑ ∑∫   (34) 
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and  

 { }( ) ( ) ( ) ( ) 2

=1 =1

2= i d = .
N N

l l l l
l x x l l l

l l

M a q q q q x a A
B

∞
∗ ∗

−∞

π
− − κ∑ ∑∫       (35) 

4. CONCLUSIONS 

The dynamics of optical Gaussons in birefringent fibers, and DWDM 
systems, is studied in this paper. An exact Gausson solution is obtained in each of 
these cases. The constraint conditions fell out during the course of derivation of the 
exact solutions. These constraints must remain valid for the propagation of 
Gaussons down the optical fibers. Additionally, a succinct discussion on Thirring 
solitons is included as a by-product of birefringent fibers.  

These exact Gausson solutions in the context of birefringent fibers and 
DWDM systems, are new and are being reported for the first time in this paper. 
These exact solutions will be extremely useful in future in further studies with 
Gaussons. For example, the quasi-stationary Gaussons will be obtained by the aid 
of multiple-scale analysis, in presence of several other perturbation terms. 
Additionally, these exact Gaussons will be of great help in formulating the quasi-
particle theory, in the study of soliton-soliton interactions. These results will all be 
reported in future publications. 
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