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1. INTRODUCTION

Among the short-range residual interactions to be considered in nuclear theory,
the pairing interaction is the most important [1–5]. There is much experimental evi-
dence of pairing correlations in nuclei: the energy gap found in the excitation energy
spectra of even-even deformed nuclei; the even-odd effect in nuclear masses; low-
lying vibrational 2+ states of even-even nuclei in the vicinity of closed shells; the
spin zero of even-even nuclei and the spin determined by the last unpaired nucleon
of odd-A nuclei; the existence of other spherical nuclei around the magic ones, etc.

A. Bohr et al. [6] suggested the analogy with electron correlations in the theory
of superconductivity, developed by Bardeen, Cooper and Schriefer (BCS) [4]. Se-
cond quantization is usually used. The Bogoliubov-Valatin transformation allows to
work with independent quasiparticles instead of interacting particles. BCS pairing
corrections have been introduced by Strutinsky [7] in the same time with shell cor-
rections. Alternatively, the residual pairing interactions can be treated within Lipkin-
Nogami (LN) model [8–11].

As stated by Lipkin [8] in many-particle system theory there are many exam-
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ples where the used wave functions are disregarding the existence of some conser-
vation laws, e.g. Nilsson wave functions are not eigenfunctions of the total angular
momentum and BCS [4] wave functions used to treat superconductors and pairing
in nuclei do not conserve the number of particles. The Bogoliubov-Valatin trans-
formation is not commutable with the nucleon-number operator [9] hence the wave
function does not correspond to a system with a definite number of nucleons. Never-
theless, such wave functions have been used with great success to predict or explain
experimental results. In the approach used by Lipkin to overcome this difficulty the
independent particle wave function are not considered to be the true wave functions
but “model wave functions” not including the effects of correlations. This effect
on the energy eigenvalues may be eliminated by using a model Hamiltonian instead
of the original Hamiltonian. Lipkin, Nogami and co-workers [8, 9, 12] proposed to
minimize the expectation value of the model Hamiltonian

Ĥ= Ĥ−λ1N̂ −λ2N̂
2 (1)

by determining λ1 and λ2 using certain conditions. Ĥ is the pairing Hamiltonian
and N̂ is the particle number operator. Minimization of the expectation value of
Ĥ−λ1N̂ leads to the usual BCS model, with λ1 determined from the particle num-
ber condition. Thus λ1 is a Lagrange multiplier but the particle number fluctuation
constant λ2 is not.

There is also a practical reason for trying to find an alternative to BCS theory
– the collapse happening whenever the spacing between single particle levels at the
Fermi energy is too large (e.g. at magic numbers or for deformed actinide nuclei with
neutron numbers 142 and 152 [11]): there may be a critical value of the pairing-force
strength below which the BCS system of two nonlinear equations have no non-trivial
solutions.

Following input quantities [10] are defined: pairing strength parameter G; the
smooth effective-interaction pairing-gap ∆G (not to be confused with the average
pairing-gap ∆̄ – directly compared to experimental pairing gap). Calculated quanti-
ties are: the pairing gap ∆; Fermi energy λ; number-fluctuation constant λ2; occu-
pation probabilities v2

k, and shifted-particle energies εk.
We have frequently used the macroscopic-microscopic method [13,14] to study

heavy and superheavy nuclei [15–17], as well as the atomic clusters deposited on a
surface [18–21] by employing up to now only BCS pairing corrections. In the present
work we would like to compare the LN and BCS pairing corrections for two nuclei
240Pu and 286Cn using the spheroidal harmonic oscillator shell model and for 258Fm
with two-center shell model [22] at symmetry. Before illustrating the results we
shall briefly present the spheroidal harmonic oscillator, the Strutinsky shell correction
method, the BCS and LN pairing models.
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2. SPHEROIDAL HARMONIC OSCILLATOR ENERGY LEVELS

The spheroidal harmonic oscillator has been used in various branches of Physics.
The famous single-particle Nilsson model is very successful in Nuclear Physics. Its
variants [23, 24] are of particular interest for atomic clusters [25].

2.1. NILSSON PARAMETRIZATION FOR A SPHEROIDAL NUCLEUS

For spheroidal shapes, generated by a potential with cylindrical symmetry

V =
MR2

0

2
(ω2
⊥ρ

2 +ω2
zz

2) (2)

S. G. Nilsson [26] introduced the deformation ε by expressing the two deformation
dependent frequencies by

ω⊥ = ω0(ε)
(

1 +
ε

3

)
ωz = ω0(ε)

(
1− 2ε

3

)
. (3)

The volume conservation, ω2
⊥ωz = (ω0

0)3 allows to determine the dependence of
ω0(ε):

(ω0)3
(

1 +
ε

3

)(
1− 2ε

3

)
= (ω0

0)3 ; ω0 =
ω0

0[
1−ε2

(
1
3 + 2ε

27

)]1/3 , (4)

where for a nucleus with mass numberA one takes ~ω0
0 = 41A1/3 MeV and ~2/M =

41.5 MeV·fm2.
The shape of a spheroid with semiaxes a,c (c is the semiaxis along the sym-

metry) expressed in units of the spherical radius R0 = r0A
1/3 may be determined

by a single deformation coordinate which can be the quadrupolar deformation [26]
ε= 3(c−a)/(2c+a). The eigenvalues [27] in units of ~ω0

0 are given by

εi = [N + 3/2 +ε(n⊥−2N/3)][1−ε2(1/3 + 2ε/27)]−1/3 (5)

in which the quantum numbers n⊥ and nz are nonnegative integers. Their summation
gives the main quantum number N = n⊥+nz . We have

E = ~ωz(nz + 1/2) +~ω⊥(n⊥+ 1). (6)

A large degeneracy occurs when ω⊥/ωz = nc/na, hence ε= 3(nc−na)/(na+2nc).
For example, at nc = na we get ε= 0 (sphere), with magic numbers 2, 8, 20, 40, 70,
112, 168, 240, 330, ... At nc = 2, na = 1 one has ε = 0.6 and the magic numbers
are 2, 4, 10, 16, 28, 40, 60, 80, 110, 140, 182, 224, 280, 336, ... At nc = 1, na = 2
(oblate shape ε = −0.75) the magic numbers are 2, 6, 14, 26, 44, 68, 100, 140,
190, ... These magic numbers are changed if we include a spin-orbit interaction into
the Hamiltonian. In units of ~ω0

0 one has a linear variation of the energy levels in
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function of deformation ε. Due to the Pauli principle, each energy level εi, with
quantum numbers n⊥ and N , can accommodate g = 2n⊥+ 2 nucleons. One has a
number of (N +1)(N+2) nucleons in a completely occupied shell characterized by
the main quantum number N , and the total number of states for the lowest N + 1
shells is

∑N
N=0(N + 1)(N + 2) = (N + 1)(N + 2)(N + 3)/3 leading to the magic

numbers mentioned above for a spherical shape, ε= 0 in the absence of the spin-orbit
coupling (see Fig. 1).

In a system of cylindrical coordinates (ρ,ϕ,z) the wave function [28, 29] can
be written as a product of the eigenfunctions

ψmnr(ρ) =

√
2

α⊥
Nm
nrη

|m|
2 e−

η
2L|m|nr (η) =

√
2

α⊥
ψmnr(η), (7)

ψnz(z) =
1
√
αz
Nnze

− ξ
2

2 Hnz(ξ) =
1
√
αz
ψnz(ξ), (8)

Φm(ϕ) =
1√
2π
eimϕ, (9)

where L|m|nr are the associated (or generalized) Laguerre polynomials andHnz are the
Hermite polynomials. The variables η and ξ are defined by η = ρ2/α2

⊥, ξ = z/αz ,
where α⊥ =

√
~/Mω⊥ ≈ A1/6

√
ω0

0/ω⊥, αz =
√
~/Mωz ≈ A1/6

√
ω0

0/ωz . The
normalization constants

(Nm
nr)

2 =
nr!

(nr + |m|)!
; (Nnz)

2 =
1√

π2nznz!
(10)

are obtained from the orthonormalization conditions.
With increasing prolate deformation, ε, an energy level with n⊥ = 0 will de-

crease in energy

ε(n⊥ = 0) =

(
n+

3

2
−ε2n

3

)[
1−ε2

(
1

3
+

2ε

27

)]−1/3

(11)

and the level with n⊥ = n will increase in energy

ε(n⊥ = n) =

(
n+

3

2
+ε

n

3

)[
1−ε2

(
1

3
+

2ε

27

)]−1/3

. (12)

In this way, for a given prolate deformation and a maximum energy εm, there
are nmin closed shells and other levels for high-order shells up to nmax:

nmin =

{
εm

[
1−ε2

(
1

3
+

2ε

27

)]1/3

− 3

2

}
1

1 +ε/3
, (13)

nmax =

{
εm

[
1−ε2

(
1

3
+

2ε

27

)]1/3

− 3

2

}
1

1−2ε/3
. (14)
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In the corresponding computer program the levels are arranged in order of increasing
energy and each level corresponds to n⊥+ 1 doubly degenerate states.

2.2. CLEMENGER PARAMETRIZATION FOR A SPHEROIDAL ATOMIC CLUSTER

This time the dimensionless semiaxes of the spheroid are given by

a=

(
2− δ
2 + δ

)1/3

; c=

(
2 + δ

2− δ

)2/3

;
a

c
=

2− δ
2 + δ

= a3 ; c=
1

a2
(15)

and the harmonic oscillator part of the potential [24] is given by

V =
Mω2

0R
2
0

2

[
ρ2

(
2 + δ

2− δ

)2/3

+z2

(
2− δ
2 + δ

)4/3
]
, (16)

where ω0 is a constant which for an atomic cluster may be estimated by the equation

~ω0(N) =
49 eV bohr2

r2
sN

1/3

[
1 +

t

rsN1/3

]−2

=
13.72 eV Å2

rsR0

[
1 +

t

rsN1/3

]−2

(17)

which is 3.0625N−1/3 for N � 0.046 in case of Na clusters. Since we consider
solely monovalent elements, N in this eq. is the number of atoms for the family of
clusters MZ±

N , rs is the Wigner-Seitz radius expressed in atomic units, and t denotes
the electronic spillout for the neutral cluster. In units of ~ω0 the eigenvalues are given
by

ε=
2

(2− δ)1/3(2 + δ)2/3

[
n+

3

2
+ δ

(
n⊥−

n

2
+

1

4

)]
. (18)

The low lying energy levels for the six shells (main quantum number n =
0,1,2,3,4,5) can be seen in Fig. 1. Besides the important degeneracy at a spheri-
cal shape (δ = 0), one also have degeneracies at some superdeformed shapes, e.g. for
prolate shapes at the ratio c/a= (2 + δ)/(2− δ) = 2 i.e. δ = 2/3.

3. SHELL CORRECTIONS

We split each single-particle degenerate level so that we use double-degenerate
states (spin up and spin down) at input of shell, δU , and pairing corrections, δP ,
arranged in order of increasing energy. The total shell correction for protons and
neutrons is given by

δUp =
n∑
ν=1

2Eν− Ũ ; δUp+ δUn = δU ; δE = δU + δP. (19)

Calculations for neutrons are similar with those for protons, hence we shall consider
only protons in the following. We have infinite-depth potential wells, hence the level
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Fig. 1 – Harmonic oscillator energy levels in units of ~ω0 versus deformation δ. The quantum
numbers n,n⊥ are given for each level at the right-hand side of the figure. ε= 6δ/(6 + δ).

spectrum {εi} is discrete, and the level density g may be represented as a sum of
delta functions. The smooth component g0(ε) describing the average behavior of
the level distribution and the oscillating component δg(ε) has a period of about ~ω0

0 .
The smoothed-level distribution density may be obtained by averaging the actual
distribution over a finite energy interval Γ' ~ω0

0

g̃(ε) =

∫ +∞

−∞
ζ

(
ε− ε′

γ

)
g(ε′) dε′ =

1

γ

∞∑
i=1

(
ε− ε′

γ

)
, (20)

where γ = Γ/~ω0
0 .

At a given γ, all states producing a finite contribution to g̃, for ε ≤ λ̃, where
λ̃=EF /~ω0

0 represents the Fermi energy, must be included. The level density fluctu-
ations of faraway occupied levels could affect the level density g̃ and, consequently,
the uniform level distribution energy Ũ . This fact is of great importance for calcula-
tion of the shell correction obtained as a small difference of two large quantities.
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In case ofm= 3, frequently used in practice, the level density of the continuous
level distribution is expressed as

g̃(ε) =

{
nm∑
i=1

[2.1875 +yi(yi(1.75−yi/6)−4.375)]e−yi

}
(1.77245385γ)−1. (21)

The summation is performed up to the level nm fulfilling the condition |xi| ≥ 3.
The Fermi energy λ̃ of a smoothed level distribution may be obtained from

Np =

∞∑
i=1

[
1 + erf(xiF ) +

e−x
2
iF

√
π
Pm(xiF )

]
, (22)

where P0 = 0; P1 = xiF ; P2 = −xiF (0.5yiF − 1.75); P3 = xiF [yiF (yiF − 8) +
14.25]/6; yiF = x2

iF = (λ̃− εi)2/γ2.
This nonlinear equation, with λ̃ as unknown, can be solved numerically by

using an iteration scheme (Newton-Raphson), which refines an initial guess λ̃0 =
(εn+ εn+1)/2 with n=Np/2. For levels far away from the Fermi energy, satisfying
the relationship |xiF | ≥ 3, we can approximate Np =

∑
i 1, if ε < λ̃ and Np = 0, if

ε > λ̃.
If g̃s is the density of states at Fermi energy, λ̃, obtained from the shell correc-

tion calculation g̃s = dZ/dε, (which is expressed in number of levels per ~ω0
0 spacing

when the energy levels are expressed in units of ~ω0
0) the level density is half of this

quantity:

g̃n = g̃s/2 =
1

2

dZ

dε
. (23)

The total energy of the uniform level distribution, Ũ , reproduces the average
behavior of the total energy but not its local fluctuations. It can be obtained from the
relationship

ũ=
∑
i=1

{
εi

[
1 + erf(xiF ) +

e−x
2
iF

√
π
Pm(xiF )

]
+
γe−x

2
iF

√
π

Qm(xiF )

}
, (24)

where

Qm = 1 +
m∑
k=1

a2k(H2k + 4kH2k−2) =−a2mH2m (25)

and Q0 =−1; Q1 = yiF −0.5; Q2 = yiF (1.5−0.5yiF )−0.375; Q3 = {yiF [11.25+
yiF (yiF −7.5)]−1.875}/6.

4. BCS PAIRING CORRECTIONS

We consider, like in the preceding section, a set of doubly degenerate levels
{εi} expressed in units of ~ω0

0 . In the absence of pairing field, the first Z/2 levels
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are occupied, from a total number of nt levels available. Only few levels below (n)
and above (n′) the Fermi energy are contributing to the pairing correlations. Usually
n′ = n. For proton levels the order of the Fermi level is Z/2 and the order of the
lowest level taken into account in pairing calculations isN1 =Z/2−n+1. The order
of the corresponding highest level is N2 = Z/2 +n′. If g̃s is the density of states at
Fermi energy obtained from the shell correction calculation g̃s = dZ/dε, expressed in
number of levels per ~ω0

0 spacing, the level density is half of this quantity: g̃n = g̃s/2.
We can choose as computing parameter, the cut-off energy (in units of ~ω0

0),
Ω' 1� ∆̃. Let us take the integer part of the following expression

Ωg̃s/2 = n= n′. (26)

When from calculation we get n > Z/2 we shall take n= Z/2 and similarly if n′ >
nt−Z/2 we consider n′ = nt−Z/2.

The gap parameter ∆ = |G|
∑

k ukvk and the Fermi energy with pairing corel-
lations λ (both in units of ~ω0

0) are obtained as solutions of a nonlinear system of two
BCS equations

n′−n=

kf∑
k=ki

εk−λ√
(εk−λ)2 + ∆2

, (27)

2

G
=

kf∑
k=ki

1√
(εk−λ)2 + ∆2

, (28)

where ki = Z/2−n+ 1; kf = Z/2 +n′.
The pairing interaction G is calculated from a continuous distribution of levels

2

G
=

∫ λ̃+Ω

λ̃−Ω

g̃(ε) dε√
(ε− λ̃)2 +∆̃2

, (29)

where λ̃ is the Fermi energy deduced from the shell correction calculations and ∆̃
is the gap parameter, obtained from a fit to experimental data, usually taken as ∆̃ =
12/
√
A~ω0

0 .
Real positive solutions of BCS equations are allowed if

G

2

∑
k

1

|εk−λ|
> 1, (30)

i.e. for a pairing force (G-parameter) large enough at a given distribution of levels.
The system can be solved numerically by Newton-Raphson method refining an initial
guess

λ0 = (nsεd+ndεs)/(ns+nd) +G(ns−nd)/2,
∆2

0 = nsndG
2− (εd− εs)/4,

(31)
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where εs,ns are the energy and degeneracy of the last occupied level and εd,nd are
the same quantities for the next level. Solutions around magic numbers, when ∆→ 0,
have been derived by Kumar et al. [30].

As a consequence of the pairing correlation, the levels situated below the Fermi
energy are only partially filled, while those above the Fermi energy are partially
empty; there is a given probability for each level to be occupied by a quasiparticle

v2
k =

1

2

[
1− εk−λ√

(εk−λ)2 + ∆2

]
(32)

or a hole

u2
k = 1−v2

k. (33)

Only the levels in the near vicinity of the Fermi energy (in a range of the order of ∆
around it) are influenced by the pairing correlations. For this reason, it is sufficient
for the value of the cut-off parameter to exceed a given limit Ω� ∆̃, the value in
itself having no significance.

At a given deformation, the pairing correction to the deformation energy is
calculated by using the relationship δp = p− p̃, representing the difference between
the pairing correlation energies for the discrete level distribution

p=

kf∑
k=ki

2v2
kεk−2

Z/2∑
k=ki

εk−
∆2

G
(34)

and for the continuous level distribution

p̃=−(g̃∆̃2)/2 =−(g̃s∆̃2)/4. (35)

A term G(
∑kf

ki
v4
k−
∑Z/2

ki
1) is supposed to be negligibly small.

Compared to shell correction, the pairing correction is out of phase and smaller.

5. LIPKIN-NOGAMI PAIRING CORRECTIONS

In the following we shall follow the Ref. [10] for even-even nuclei. The ef-
fective interaction pairing gap expression, ∆G, is different from the model average
pairing gap, ∆̄, which may be compared with experimental odd-even mass differ-
ences. Instead of conventional ∆G = 12/

√
A, we use

∆Gn =
3.3Bs

N1/3
; ∆Gp =

3.3Bs

Z1/3
(36)

with the deformation-dependent surface term Bs = 1, as for spherical nuclei.
From Strutinsky shell corrections the average level density of doubly degene-
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rate levels at Fermi energy λ̃ is given by eq. (23) or with notations from [10]

ρ̃=
1

2
g̃(λ̃), (37)

where g̃ is the smooth level density in Strutinsky’s shell correction method and λ̃
is the Fermi energy of the smoothed single-particle energy. In the LN case the
shifted single-particle energies εk are assumed to be equally spaced; they are related
to single-particle energies ek by

εk = ek + (4λ2−G)v2
k , k =N1,N1 + 1, ...,N2. (38)

Since v2
k ' 1 far below Fermi surface and v2

k ' 0 far above, the corresponding single-
particle energy distribution is approximately uniform far above and far below the
Fermi surface but spread apart by the amount 4λ2−G close to the Fermi surface. The
increased stability associated with gs configurations is due to the low level densities
near Fermi surface.
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Fig. 2 – Some quantities of BCS (left) and Lipkin-Nogami (right) pairing calculations for 240Pu using
the energy levels of spheroidal harmonic oscillator. ρmp and ρmn are the densities of states at Fermi
energy, eq. (37) for protons and neutrons. Epmp and Epmn are p̃×~ω0

0 for protons and neutrons.
The solutions of BCS and Lipkin-Nogami set of equations are Fermi energies EFp and EFn, the gaps

∆p and ∆n, and λ2p and λ2n.

The dependence of pairing strength, G, on the effective interaction pairing gap,
∆G, is obtained by assuming a constant level density for the average nucleus in the
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11 Using Lipkin-Nogami and BCS pairing within Macroscopic-Microscopic method 1339

vicinity of Fermi surface. In this way we may replace the sums by integrals:

1

G
=
ρ̃

2

∫ y2

y1

dx√
x2 + ∆2

G

=
ρ̃

2

[
ln

(√
y2

2 + ∆2
G+y2

)
− ln

(√
y2

1 + ∆2
G+y1

)]
, (39)

where

y1 =
−Z/2 +N1−1

ρ̃
=
−n
ρ̃

; y2 =
−Z/2 +N2

ρ̃
=
n′

ρ̃
. (40)

Pairing gap, ∆, Fermi energy, λ, number fluctuation constant, λ2, occupation
probability, v2

k, shifted single-particle energies, εk, are determined by solving a sys-
tem of 2(N2−N1)+5 = 2(n+n′)−2+5 = 2(n+n′)+3 coupled nonlinear equa-
tions

Ntot = Z = 2

N2∑
N1

v2
k + 2(N1−1), (41)

2

G
=

N2∑
N1

1√
(εk−λ)2 + ∆2

, (42)

v2
k =

1

2

[
1− εk−λ√

(εk−λ)2 + ∆2

]
, k =N1,N1 + 1, ...,N2, (43)

u2
k = 1−v2

k , k =N1,N1 + 1, ...,N2, (44)

εk = ek + (4λ2−G)v2
k , k =N1,N1 + 1, ...,N2, (45)

λ2 =
G

4


(∑N2

N1u
3
kvk

)(∑N2
N1ukv

3
k

)
−
∑N2

N1u
4
kv

4
k(∑N2

N1u
2
kv

2
k

)2
−
∑N2

N1u
4
kv

4
k

 . (46)

This set of equations can be solved numerically by using the steepest descent method
with Jacobian determinant.

The quasi-particle energy of the odd nucleon in an odd-A nucleus

Ek =
√

(εk−λ)2 + ∆2 +λ2 , k =N1,N1 + 1, ...,N2. (47)

In the LN model the quantity ∆ +λ2 is identified with odd-even mass differences.
For even-even nuclei the pairing correlation energy plus quasi-particle energy

is

Epc =
N2∑
N1

2v2
kek−

∆2

G
− G

2

N2∑
N1

2v4
k−4λ2

N2∑
N1

u2
kv

2
k. (48)
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For the average pairing correlation energy plus quasi-particle energy of an even-even
nucleus we have

Ẽpc =
ρ̃

2

[
(y2−G)

(
y2−

√
y2

2 + ∆2
G

)
+ (y1−G)

(
y1 +

√
y2

1 + ∆2
G

)]
+

(G−4λ̃2)ρ̃∆G

4

[
arctan

(
y2

∆G

)
−arctan

(
y1

∆G

)]
,

(49)

where

λ̃2 =

(
A−C
B−C

)
(50)

with

A=

(
ρ̃∆G

4

)2


(

2

Gρ̃

)2

−

ln


√
y2

2 + ∆2
G√

y2
1 + ∆2

G

2
 , (51)

B =

(
ρ̃∆G

4

)2[
arctan

(
y2

∆G

)
−arctan

(
y1

∆G

)]2

, (52)

C =
ρ̃∆G

32

[
∆G

(
y2

y2
2 + ∆2

G

− y1

y2
1 + ∆2

G

)
+ arctan

(
y2

∆G

)
−arctan

(
y1

∆G

)]
, (53)

Pairing correction
δP = Epc− Ẽpc. (54)

As in BCS model, compared to shell correction, the pairing correction is out of phase
and smaller.

6. RESULTS

We give in Fig. 2 some quantities of BCS (left) and Lipkin-Nogami (right)
pairing calculations for 240Pu using the energy levels of spheroidal harmonic oscil-
lator. In this case ∆Gp = 0.72578 MeV and ∆Gn = 0.62670. For neutron energy
levels at ε = 0.460 the BCS pair collapses which is seen in Fig. 2 as discontinuities
for trivial solutions ∆n = EFn = 0 MeV. A remarkable fact is the absence of such a
collapse for LN theory.

The famous double-hump variation of the total shell plus pairing correction
energy δE = δU + δP is shown in Fig. 3 for 240Pu. The smoothing effect of pairing
is evident. The total correction energy δE in case of LN is slightly shifted to larger
values compared to BCS.

In a similar way behaves δE of the superheavy nucleus 286Cn shown in Fig.
4. This time there is a relatively large range of values of deformation ε = (0,0.130)
for BCS and (0,0.120) for LN where both kinds of pairing corrections for proton
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Fig. 3 – Microscopic pairing corrections (top) and shell plus pairing corrections (bottom) for 240Pu
using harmonic oscillator energy levels. BCS (left) and LN (right) calculations.
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Fig. 4 – Microscopic pairing corrections (top) and shell plus pairing corrections (bottom) for 286Cn
using harmonic oscillator energy levels. BCS (left) and LN (right) calculations.
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Fig. 5 – Microscopic pairing corrections (top) and shell plus pairing corrections (bottom) for 258Fm at
the mass asymmetry η = 0. The two center shell model energy levels are used.

energy levels are in collapse due to the proximity of a magic number of protons (near
Z = 112). ∆Gp = 0.68461 MeV and ∆Gn = 0.59110.

As a last example we consider in Fig. 5 the microscopic pairing corrections
and shell plus pairing corrections for 258Fm at the mass asymmetry η = 0 calculated
by using the most advanced two-center shell model [22]. Ri is the initial value of
the separation distance between fragment centers and Rt is the separation distance at
the touching point. Now the high density of levels for which both kinds of pairing
collapses occurs not far from the touching point configurations, where the identical
fragments posses a magic number of protons Z1 = Z2 = 50. The range corresponds
to x= (R−Ri)/(Rt−Ri) = (0.769,1.0) for BCS and (0.800,1.0) for LN. ∆Gp =
0.71096 MeV and ∆Gn = 0.61042. Despite the almost simultaneous collapse of BCS
and LN pairing, the net result of shell plus pairing corrections looks better for LN
pairing theory in both Figs 5 and 3.

In conclusion the Lipkin-Nogami pairing theory offers some advantages com-
pared to BCS from principial as well as practical point of view.
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