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Abstract. We provide a brief review of recent theoretical studies of optical spatial 
solitons in parity-time- (PT-) symmetric mixed linear-nonlinear lattices. The existence 
and stability of optical spatial solitons forming in PT-symmetric lattices with spatially 
periodic modulation of the Kerr nonlinearity are briefly overviewed. The linear optical 
lattices are considered to be either regular lattices or superlattices formed by the 
superposition of two periodic lattice potentials having commensurable lattice periods. 
The obtained results show that different kinds of linear optical lattices can profoundly 
affect soliton properties. In particular, by mixing linear and nonlinear optical lattices, a 
lot of unique spatial soliton properties were put forward. These features may find 
potential applications in all-optical signal processing and in high-speed circuits for 
optical communications systems. 
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1. INTRODUCTION 

In 1998, Bender and Boettcher found in a seminal work [1] that non-
Hermitian Hamiltonians can still have entirely real eigenvalue spectra provided that 
these Hamiltonians obey parity-time (PT) symmetry. Such types of Hamiltonians 
can also undergo a “phase transition” above a critical threshold, i.e., a spontaneous 
PT-symmetry-breaking; above such transition point the eigenvalue spectrum ceases 
being entirely real-valued and becomes partially complex-valued [2–6].  

In general, the action of the parity operator P is defined by the relations p → –p 
and x → –x (here p and x are the momentum and position operators, respectively), 
while that of the time operator T by the relations p → –p, x → x, and the complex 
conjugation i → –i. Given the fact that the action of the time operator T leads to 
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time reversal, i.e., TH= p2/2+V*(x) (here H is the Hamiltonian of the system), one 
gets HPT= p2 /2 +V(x) and PTH= p2/2+V*(–x).  

Thus one can conclude that a necessary condition for the Hamiltonian to be 
PT-symmetric is that the potential function V(x) should fulfill the condition V(x) = 
V*(–x) [1, 7–8]. Therefore, the real part of the PT-symmetric complex-valued 
potential must be an even function of the position variable x, whereas the 
imaginary part should be an odd function of the spatial variable x. The PT-
symmetric potentials can be realized through using the complex refractive index 
distribution n(x) = n0 + nR (x) + inI (x), where n0 represents the background 
refractive index and x  is the normalized transverse coordinate [7–9]. Thus, to 
satisfy the PT-symmetry condition, ( )xnR  must be an even function of the 
transverse spatial coordinate x , while the gain (or loss ) component nI (x) of the 
refractive index distribution n(x) should be an odd one.  

Beam dynamics in PT-symmetric complex-valued periodic optical lattices 
can exhibit unique characteristics, such as double refraction, power oscillations, 
nonreciprocal diffraction patterns, etc. In the theoretical arena, it was studied the 
effect of Kerr nonlinearity on the unique beam dynamics in PT-symmetric 
complex-valued periodic optical potentials, i.e., the formation of nonlinear self-
trapped modes, alias spatial solitons in both one-dimensional (1D) and two-
dimensional (2D) PT-symmetric synthetic linear optical lattices (OLs) [7, 8, 10].  

Defect modes in PT-symmetric periodic complex-valued potentials have also 
been studied [11, 12]. Gap solitons in parity-time complex-valued periodic OLs 
with the real part of the linear lattice potential having the shape of a double-
periodic function (a superlattice potential) were investigated in Ref. [13]. Stable 1D 
and 2D bright spatial solitons in defocusing Kerr media with PT-symmetric 
potentials have been found, too [14]. Also, it has been found that the gray solitons 
in PT-symmetric potentials can be stable [15]. 

Very recently, Nixon et al. systematically studied the stability properties of 
solitons in PT-symmetric lattices and found that both 1D and 2D solitons can 
propagate stably under appropriate conditions [16]. Two-dimensional solitons in 
PT-symmetric lattice potentials have been studied in a separate work by Zeng and 
Lan [17]. It was found in Ref. [17] that 2D gap solitons in the case of self-focusing 
nonlinearity may exist in PT-symmetric lattices, but they were found to be unstable 
due to unavoidable collapse instability.  

Achilleos et al. [18] considered nonlinear analogs of PT-symmetric linear 
systems exhibiting defocusing nonlinearities. They studied both the ground state 
and odd excited states (dark solitons and vortices) of the system and they put 
forward the unique features of PT-symmetric systems exhibiting self-defocusing 
nonlinearities [18]. 

Based on multi-waveguides of PT-symmetric lattices, the coupled solitons 
can produce some new and intriguing phenomena. In a seminal recent work by 
Zezyulin and Konotop [19] nonlinear modes in finite-dimensional PT-symmetric 
systems were considered in detail. It was shown in Ref. [19] that the 
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transformations among PT-symmetric systems by rearrangements of waveguide 
arrays with gain and loss do not affect their pure real linear spectra; however, the 
nonlinear features of such PT-symmetric systems undergo significant changes.  

Alexeeva et al. [20] studied spatial and temporal solitons in the PT-symmetric 
coupler with gain in one waveguide and loss in the other. It was shown in Ref. [20] 
that stability properties of both high- and low-frequency solitons are completely 
determined by a single combination of the soliton's amplitude and the gain-loss 
coefficient of the coupled waveguides. Moreover, in a recent paper by Chen et al. 
[21], optical modes in PT-symmetric double-channel waveguides have been 
reported, too. 

Bragg gap solitons in PT-symmetric lattices with competing optical 
nonlinearities of the cubic-quintic type have been also investigated in a recent 
study [22]. These solitons were found to be unstable; however off-site gap solitons 
were found to be more robust than in-site gap solitons, see Ref. [22] for more 
details of this study. Various families of solitons (including multi-stable solitons) 
with even and odd geometrical symmetries are found in both the semi-infinite and 
the first gaps [23]. 

Recently, nonlocal optical nonlinearity has been introduced into the study of 
different models of PT-symmetric complex-valued potentials. For example, defect 
solitons in PT-symmetric potentials with nonlocal nonlinearity were investigated in 
a recent work by Hu et al. [24]. It was shown in Ref. [24] that for positive or zero 
defects, fundamental and dipole solitons can exist stably in the semi-infinite gap 
and the first gap, respectively. However, for negative defects, fundamental solitons 
can be stable in both the semi-infinite gap and the first gap, whereas dipole solitons 
were found to be unstable in the first gap, see Ref. [24]. It was also shown in Ref. 
[24] that when the modulation depth of the PT-symmetric optical lattices is small, 
defect solitons can be stable for both positive and zero defects, even if the PT-
symmetric potential is above the phase transition point.  

Yin et al. [25] in a recent study of solitons in PT-symmetric potentials with 
spatially modulated nonlocal nonlinearity revealed that the amplitude of the 
spatially modulated nonlinearity and the degree of the uniform nonlocality can 
profoundly affect the stability properties of solitons. There exist stable solitons in 
low-power region, and unstable ones in high-power region. In the unstable cases, 
the solitons exhibit jump from the original site (channel) to the next one, and they 
can continue the motion into the other adjacent channels, see Ref. [25]. Moreover, 
when the amplitude of the imaginary part of the linear PT-symmetric lattice 
exceeds a critical value (the so-called “phase transition” point), the lattice solitons 
were found to be unstable and to decay quickly upon propagation, see Ref. [25] for 
a detailed study of this issue. 

The truncation of PT-symmetric complex-valued potentials breaks their 
symmetry and prohibits the formation of stationary states, at least around the edge 
of potential profile. This is different from the case of real-valued potentials. In the 
latter case, surface solitons that may form at the edge of truncated periodic lattices 
were theoretically studied and subsequently observed in one- and two-dimensional 
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settings, in both self-focusing and self-defocusing optical media [26]. Another 
interesting class of complex-valued potentials is represented by structures where 
linear gain acts only in one or several localized spots, while the real part of 
potential may be a periodic function. Such complex-valued potentials support 
dissipative solitons if additional nonlinear losses compensate localized gain [27–30]. 
Notice that in sharp contrast to PT-symmetric structures the truncation of such 
potentials still allows existence of stationary states even around the edge of 
potential if gain also acts around its edge [31]. Recently, it was revealed that 
truncated periodic complex potentials with homogeneous losses can support stable 
surface solitons in both focusing and defocusing media [32].  

The study of solitons in nonlinear OLs has attracted a lot of attention; see a 
recent comprehensive review in this area [33]. Such nonlinear OLs represent a 
spatially periodic modulation of the local strength and sign of the optical 
nonlinearity. It should be mentioned that PT-symmetric nonlinear OLs can also 
support stable discrete solitons [34]. A series of incentive works in the area of PT-
symmetric nonlinear lattices in various physical settings have been recently 
published [35–37]. The existence of localized modes, including multipole solitons, 
supported by PT-symmetric nonlinear lattices was recently reported [35]. Such PT-
symmetric nonlinear OLs can be implemented by means of proper periodic 
modulation of nonlinear gain and losses, in specially engineered nonlinear optical 
waveguides.  

Driben and Malomed [38] investigated in detail the problem of stability of 
solitons in PT-symmetric nonlinear optical couplers and reported families of 
analytical solutions for both symmetric and antisymmetric solitons in dual-core 
systems with Kerr nonlinearity and PT-balanced gain and loss. Also, stabilization 
of solitons in PT models with “supersymmetry” by periodic management in a 
system based on dual-core nonlinear waveguides with balanced gain and loss 
acting separately in the cores was investigated in Ref. [39].  

Solitons in periodic mixed lattices with linear and nonlinear counterparts 
have been investigated, too. The issue of competition between the lattices of the 
linear and nonlinear types was first investigated by Bludov and Konotop [40] in the 
context of matter waves in Bose-Einstein condensates (BECs); see also a 
subsequent work [41] on gap solitons in BECs loaded in mixed linear-nonlinear 
optical lattices. Further, solitons in purely PT-symmetric nonlinear lattices [35, 42, 
43], and solitons in mixed PT-symmetric linear-nonlinear lattices have been 
investigated, too [44]. It was found that the combination (superposition) of PT-
symmetric linear and nonlinear lattices can stabilize lattice solitons and it was 
revealed that the parameters of the linear lattice periodic potential play a significant 
role in controlling the extent of the stability domains [44].  

The present work briefly summarizes the recent theoretical studies of lattice 
solitons in PT-symmetric lattices with/without spatially periodic modulation of the 
Kerr-type nonlinearity. In the next section we briefly overview the most general 
model of spatial soliton propagation for self-focusing Kerr nonlinearities. In Sec. 3 
we briefly review the results obtained so far for gap solitons forming in PT-
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symmetric complex-valued periodic optical lattices with the real part of the linear 
lattice potential having the shape of a double-periodic function with commensurable 
periods, i.e., the typical case of a superlattice potential. The existence and stability 
of lattice solitons in PT-symmetric mixed linear-nonlinear optical lattices in self-
focusing Kerr media are briefly discussed in Sec. 4. Solitons in PT-symmetric 
optical lattices with spatially periodic modulation of nonlinearity is briefly 
overviewed in Sec. 5. Finally, in Sec. 6 we summarize the results and we indicate a 
few possible extensions of these studies to other relevant physical settings. 

2. THE MOST GENERAL MODEL  

Spatial beam propagation in PT-symmetric periodic OLs with/without 
periodic modulation of the Kerr optical nonlinearity obeys the following 
normalized 1D nonlinear Schrödinger equation [7,44]: 

 
2

2
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z x

∂ ∂
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∂ ∂
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where i is the imaginary unit, q is the complex field amplitude, and z and x are the 
normalized longitudinal coordinate and transverse coordinate, respectively. Note 
that in Eq. (1), ν (x) is an even function of transverse spatial coordinate x and w(x) 
is an odd function; the nonlinear modulation function is N(x); when N(x) = 0 the 
nonlinear modulation of the self-focusing Kerr nonlinearity is absent. The 
stationary solutions of Eq. (1) to be searched for are of the form q(x,z) = f(x) 
exp(iµz); here f (x) is a complex-valued function, and µ is the corresponding 
propagation constant. Therefore, the complex-valued function f (x) satisfies the 
following nonlinear differential equation:  
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By substituting f (x) = h(x) + ie(x) to Eq. (2), we obtain the two coupled nonlinear 
differential equations 

 [ ] ( )2 31 1 ( ) 1 ,
2 xxh vh we N x e h N x h h+ − + − +  −  = µ    (3a) 

 [ ] ( )2 31 1 ( ) 1
2 xxe ve wh N x h e N x e e+ + + − +  −  = µ  , (3b) 

where h and e are real functions. In order to analyze the linear stability of 
stationary soliton solutions, we add the small perturbations g(x) and t(x) to the 
stationary soliton solution: 
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( , ) exp(iµ ){ ( ) [ ( ) ( )]exp( ) [ ( ) ( )]*exp( * )}q x z z f x g x t x z g x t x z= + − δ + + δ , 

see, e.g., Ref. [45]. Here, g(x), t(x) « 1, and the superscript * represents complex 
conjugation.  

Next by substituting q(x,z) to Eq. (1) and linearizing it, we get the following 
coupled nonlinear equations:  
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  δ = − − µ + − + − + + + −    

(4) 

The coupled equations (4) can be numerically solved by matrix eigenvalue method 
[45]. If Re(δ) > 0, the solitons are linearly unstable, otherwise, they are stable. 

The linear version of nonlinear differential equation (2) is 

 
2
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f v x w x f f
x

+ + = µ ,  (5) 

where, µ represents the propagation constant. According to Bloch theorem, the 
eigenfunctions of Eq. (5) are of the form f = Fk exp(ikx), where k is the Bloch wave 
number, and Fk  is a periodic function of x with the same period as the functions ν 
(x) and w(x).  
Substituting the Bloch solution to Eq. (5), we can get the eigenvalue equation 
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The total soliton power P is defined as  
2
dP f x

+∞

−∞
= ∫ . 

The robustness of the spatial soliton propagation was tested in direct 
numerical simulations of Eq. (1) by adding a random noise (10% of the soliton 
amplitude) to the input soliton profile. 

3. GAP SOLITONS IN PT–SYMMETRIC PERIODIC OLs WITH DOUBLE 
PERIODIC REAL PART OF LINEAR LATTICE POTENTIAL 

Recently Zhu et al. [13] reported the existence and stability of gap solitons in 
PT-symmetric complex-valued periodic lattice potentials in the special case when 
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the real part of the linear periodic lattice potential is a superposition of two terms 
with commensurable periods (a superlattice potential). Thus in Eq. (1), the real part 
of the linear periodic lattice potential is a superposition of two periodic terms, 
ν(x)=ε sin2(x+π/2)+(1–ε)sin2[2(x+π/2)], here ε is the parameter that controls the 
relative strength of the two periodic terms in the real part of the potential 
(superlattice part of the potential). Note that for the specific case studied in Ref. 
[13], the ratio of the two periods of the superlattice potential has been chosen to be 
1/2. The imaginary part was w(x)  = ω0sin(2x) and the Kerr nonlinearity was 
uniform, i.e., N(x) = 0. The relative strength ε of the real part of the superlattice 
potential and the amplitude ω0 of the imaginary part of the lattice potential 
significantly affect the stability features of solitons. In Ref. [13], the Eqs. (3a) and 
(3b) were numerically solved by the modified squared-operator method [46]. 
Equation (2) was numerically solved by the spectral renormalization method [47], 
in order to obtain soliton profiles.  

The results shown in Figs. 1(a) and 1(b) indicate that when ε = 0.3 and 
ω0 = 0.1, the solitons exist in the semi-infinite gap and can stably propagate in the 
low power region. The field profiles and propagation dynamics corresponding to 
two typical stable cases for µ = 0.55 and µ = 1.4 are shown in Figs. 2a,d and  
2(b,e), respectively. In the high power region, solitons were found to be unstable. 
For µ = 1.8, periodic oscillations of soliton power occur, as shown in Fig. 2(f). 
Note that when ω0 = 0.1, the stability features will vary for different values of ε. 
For ε = 0.7, the band diagram is also a real-valued one and the soliton is stable at 
µ = 3, as shown in Fig. 2k. In the case of µ = 3, the solitons were found to be 
unstable for both ε = 0.2 and ε = 0.3. When ε = 0.2, the band diagram is partially a 
complex-valued one, and the PT-symmetry is spontaneously broken. Figure 2l 
shows the instability at µ = 1.3 and ε = 0.2. However, for the same value of µ, the 
gap solitons were found to be stable at ε = 0.3 and ε = 0.7, see Ref. [13] for a 
detailed discussion of these issues. 

 

 
Fig. 1 – For ε = 0.3 and ω0 = 0.1: a) power P versus µ (the solid curve represents the stable region  

and the dashed curve represents the unstable region); b) Re(δ) versus µ; after Ref. [13]. 
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Fig. 2 – Soliton profile (the blue curve is the real part and the red curve is the imaginary part)  

and soliton propagation for ω0 = 0.1: a, d) µ = 0.55 and ε = 0.3; b, e) µ = 1.4 and ε = 0.3; c, f) µ = 1.8 
and ε = 0.3; g, j) µ = 0.55 and ε = 0.7; h, k) µ = 3 and ε = 0.7; i, l) µ = 1.3 and ε = 0.2; after Ref. [13]. 

4. SOLITONS IN PT-SYMMETRIC MIXED LINEAR-NONLINEAR OLs 

A. The study of the general case when the PT-symmetric linear lattice 
potential is different from the PT-symmetric nonlinear lattice potential. As in Ref. 
[44], we consider in Eq. (1), that the PT-symmetric linear lattice profile is given by 
the periodic functions ν(x) = ε0cos2(x) and w(x)  = ω0sin(2x), whereas the  
PT-symmetric nonlinear lattice modulation is given by N(x) = ν1(x)+w1(x) . Here 
ν1(x) = ε1cos(2x) and w1(x) = − ω1sin(2x). The amplitudes ε0 and ω0  are the 
amplitudes of real and imaginary parts of the linear OLs, respectively, and the 
amplitudes ε1 and ω1 are the nonlinearity modulation coefficients. Thus in the most 
general case to be briefly overviewed in this subsection we take different periodic 
spatial distributions, i.e., we consider different linear and nonlinear lattice potentials. 
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Therefore for the above choice of the two jointly acting linear and nonlinear lattice 
potentials, the real parts, the sign of the imaginary parts, and the amplitudes of the 
modulation profiles are totally different, see Ref. [44]. 

First, we fix the parameters ε0 and ω0 of the PT symmetric linear lattice in 
order to investigate the effect of PT-symmetric nonlinear lattices on soliton 
propagation [44]. We then fix the values of the two parameters describing the PT-
symmetric linear OLs as ε0 = 4 and ω0 = 0.8. The dependences of soliton power P 
on propagation constant µ are shown in Figs. 3a, 3b, and 3c, for three sets of 
nonlinear OL parameters ε1 = 0.1 and ω1 = 0.1, ε1 = 0.5 and ω1 = 0.5, and ε1 = 1 and 
ω1 = 1, respectively. From Fig. 3, we see that the soliton power increases with the 
decrease of the amplitudes ε1 and ω1 of the nonlinearity modulation. This can be 
explained as follows. Because we are considering here a self-focusing Kerr 
nonlinearity, if the depth of nonlinear lattice increases, the corresponding self-
focusing effect exerted on the optical beam, which is determined by [1+ν1 (x)]|q|2q 
and the associated nonlinear gain effect coming from the imaginary part of the 
nonlinear lattice potential are becoming stronger. In addition, for a certain depth of 
the nonlinear lattice, a higher power (or peak amplitude) of solitons will also cause 
a much stronger self-focusing effect on the optical beam. If the combination of 
self-focusing and nonlinear gain effects is stronger than a certain critical limit, the 
lattice solitons will collapse. So the existence of solitons in our specific situation 
requires that their peak amplitudes (or powers) must decrease with increase of the 
depth of nonlinear lattice in order to avoid the destruction of the solitons during 
propagation due to the presence of a very high self-focusing effect. Note that if 
only the depth of dissipative part of nonlinearity modulation is increased, the 
soliton power still decreases, i.e., the effect of the imaginary (dissipative) part of 
nonlinearity modulation on the soliton power is smaller than that induced by the 
real part of the nonlinearity modulation, see Ref. [44] for more details of these studies. 

Further we consider the longitudinal evolution of lattice solitons. The results 
of simulations are shown in Fig. 4 where both the soliton field profiles and their 
corresponding evolutions during propagation were plotted. We can see that the 
stable soliton regions are as follows: 2.7 3.4≤ µ ≤  for ε1= 0.1 and ω1= 0.1, 
2.7 3.2≤ µ ≤  for ε1= 0.5 and ω1= 0.5, and 2.7 3.0≤ µ ≤  for ε1 =1 and ω1= 1. These 
results clearly show that lattice solitons can only stabilize in the low power range 
and that the stable soliton domain narrows with the growth of the amplitudes ε1 and 
ω1 of nonlinear lattices, see Ref. [44].  

Typical stable soliton evolutions for the propagation constant µ = 2.7 are 
plotted in Figs. 4a, b for ε1 = 0.1 and ω1 = 0.1, Figs. 4e, f for ε1 = 0.5 and  
ω1 = 0.5, and Figs. 4i, j for ε1 = 1 and ω1 = 1, while typical unstable soliton 
evolutions for µ = 5 are given in Figs. 4c, d for ε1 = 0.1 and ω1 = 0.1, Figs. 4g, h for 
ε1 = 0.5 and ω1 = 0.5, and Figs. 4k, l for ε1 = 1 and ω1 = 1 [44]. 
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Fig. 3 – Power P versus propagation constant µ for ε0 = 4 and ω0 = 0.8 and: a) ε1 = 0.1 and ω1 = 0.1;  
b) ε1 = 0.5 and ω1 = 0.5; c) ε1 = 1 and ω1 = 1. The stable branches are plotted by solid curves and the 

unstable branches are plotted by dashed curves; after Ref. [44]. 

 
Fig. 4 – Soliton profiles (the solid curves show the real parts and the dotted curves show the 

corresponding imaginary parts) and soliton evolution for ε0 = 4 and ω0 = 0.8. Stable soliton evolutions 
for µ = 2.7: a, b) for ε1 = 0.1 and ω1 = 0.1; e, f) for ε1 = 0.5 and ω1 = 0.5; i, j) for ε1 = 1 and ω1 = 1. 
Unstable soliton evolutions for µ = 5: c, d) for ε1 = 0.1 and ω1 = 0.1; g, h) for ε1 = 0.5 and ω1 = 0.5;  

k, l) for ε1 = 1 and ω1 = 1; after Ref. [44]. 
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B. The study of a special case when the PT-symmetric linear lattice potential 
is identical with the PT-symmetric nonlinear lattice potential. In what follows we 
discuss the special case when we consider identical PT-symmetric lattice potentials 
for both linear and nonlinear OLs, see Ref. [44] for a detailed study of this issue. 
We thus take the following modulation profiles: ν(x) = ε0 cos2 (x), w(x) = ω0 sin 
(2x), ν1(x) = ν(x), and w1(x) = w(x). 

In order to find out the effect of modification of the amplitudes of the real 
and imaginary parts of the linear and nonlinear modulation profiles, on soliton 
propagation, we select three typical sets of parameters: (i) ε0 = 4 and ω0 = 0.8, (ii) 
ε0 = 3 and ω0 = 0.8, and (iii) ε0 = 4 and ω0 = 0.6. The corresponding total powers P 
versus propagation constant µ are shown in Fig. 5. The stability domains are found 
to be 2.7 3.5≤ µ ≤ , 1.9 3.0≤ µ ≤ , and 2.7 4.5≤ µ ≤ , for the above sets of 
parameters (i), (ii), and (iii), respectively. These results clearly show that solitons 
can be stable only in the low power regimes and that the soliton stability region 
increases with the decrease of the amplitudes of imaginary parts of modulation 
profiles of both kinds of OLs. Also, soliton stability region shifts towards the lower 
values of µ with the decrease of the amplitude of modulation profiles of real parts 
of both kinds of OLs. We thus conclude that the parameters of PT symmetric linear 
lattices play an important role in controlling the magnitude of soliton stability 
region.  

 

       
Fig. 5 – Power P versus µ for: a) ε0 = 4 and ω0 = 0.8; b) ε0 = 3 and ω0 = 0.8; c) ε0 = 4 and ω0 = 0.6.  

The stable regions are plotted by solid curves and the unstable regions are plotted by dashed curves; 
after Ref. [44]. 

We conclude this subsection by noting that the lattice solitons are tightly 
bound by the mixed PT-symmetric linear-nonlinear lattice; the high-amplitude 
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solitons are compacted within one spatial lattice period, which is equal to π in all 
numerical simulations. The most unstable solitons experience a fast decay of 
energy upon propagation, whereas the less unstable ones exhibit slight oscillations 
of their peak amplitudes. The results reported in Ref. [44] can be extended in the 
direction of considering in detail the competition between linear and nonlinear 
lattice potentials, i.e., by choosing different gain/loss combinations of the 
dissipative parts of both linear and nonlinear lattice potentials. 

5. SOLITONS IN PT-SYMMETRIC OLs WITH SPATIAL PERIODIC 
MODULATION OF NONLINEARITY 

Recently, He et al. [43] reported a detailed study of optical spatial solitons in 
PT-symmetric lattices with spatially periodic modulation of Kerr nonlinearity. In 
what follows, we briefly overview the results reported by He et al. [43]. Thus in 
Eq. (1), we select w(x) = ω0 sin (2x), ν(x) = ε cos2 (x), and the nonlinear modulation 
function is given by N(x) = p cos2 (x/T); here p is the amplitude of the modulation 
of the nonlinear refractive index and π×T is the corresponding period. The 
numerical results for power P versus µ and for Re(δ) versus µ are shown in Fig. 6 
for different depths p  of the nonlinear modulation function N(x). Figure 6a shows 
that for ε = 4 and ω0 = 0.8, the solitons existing in the semi-infinite gap can stably 
propagate in the low power regime. Moreover, we see from the numerical values of 
Re(δ) shown in Fig. 6b, that the stable range of soliton propagation increases with 
the decrease of the depth p of the modulation function N(x). When p > 1, the 
nonlinearity becomes a defocusing one. In this case, the salient features of solitons 
are similar to those for a focusing nonlinearity, including power increase with 
propagation constant and stable solitons existing in low power domain, while 
unstable ones in high power domain. If the parameter p further grows, the region of 
stable solitons decreases, and above some critical value of p, there are no stable 
localized modes. A typical example of these results can be seen in Fig. 6 for p = 1.2 
corresponding to a self-defocusing nonlinearity. 

To more clearly illustrate the main soliton features, we show typical stable 
and unstable cases of solitons propagation for different depths p  of the periodic 
modulation of the Kerr nonlinearity. Their field profiles and their corresponding 
longitudinal evolutions are shown in Fig. 7. We find that regardless of the value of 
p, in the low power regime, the solitons have a multi-peaked light intensity 
distribution and exhibit stable propagation, while in high power regime, the 
corresponding light intensity has only one peak and the solitons exhibit unstable 
longitudinal evolution. 
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Fig. 6 – a) Power P versus µ; b) Re(δ) versus µ for ε = 4 and ω0 = 0.8. The nonlinear modulation 
function is N(x) = p cos2 (2x) for p = 1.2, p = 1, and p = 0.8. The stable branches in panel (a) are 

plotted by solid curves and the corresponding unstable branches are plotted by dashed curves; after 
Ref. [43]. 

 
Fig. 7 – Soliton field profiles (the solid curves are for the real parts of the field profiles, whereas the 
dashed curves are for the imaginary parts of the field profiles), and the corresponding soliton 
propagation. For p = 1.2, the stable case is shown in (a, b) for µ = 2.7, whereas the unstable case is 
shown in (c, d) for µ = 3.1; for p = 1, the stable case is shown in (e, f) for µ = 2.7, whereas the 
unstable case is shown in (g, h) for µ = 3.5; for p = 0.8, the stable case is shown in (i, j) for µ = 2.7, 
whereas the unstable case is shown in (k, l) for µ = 4.0. The other parameters and the nonlinear 

modulation function are the same as in Fig. 6; after Ref. [43]. 
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Note that in Ref. [43], it was studied the existence and stability of solitons in 
PT-symmetric periodic OLs only in the case of spatially periodic modulation of 
nonlinearities, unlike the previous work (see Ref. [44]) with PT-symmetric mixed 
linear-nonlinear OLs. Thus in Ref. [43] the space of free parameters of the problem 
was greatly reduced. Moreover, in that work, the strength p of the amplitude of the 
nonlinear modulation was considered for both self-focusing nonlinearities ( 1p ≤ ) 
and for self-defocusing nonlinearities (p > 1). We end this section by noting that 
some of the results reported in Ref. [43] are different from those obtained for (a) 
PT-symmetric linear OLs [7,16], (b) PT-symmetric nonlinear OLs [35,42], and (c) 
PT-symmetric mixed linear-nonlinear OLs [44].   

6. CONCLUSIONS 

In this work we provided a brief overview of recent theoretical studies of 
optical spatial solitons in PT-symmetric mixed linear-nonlinear lattices. These 
nonlinear localized states are formed due to action of a confining potential 
representing a mixture of linear and nonlinear optical lattices. The linear optical 
lattices were considered to be either regular ones or superlattices. The latter are 
formed by the superposition of two periodic lattice potentials having 
commensurable periods. The results overviewed in this paper clearly show that 
different kinds of linear optical lattices can profoundly affect the unique spatial 
soliton properties.  

A natural extension suggested by these studies is to consider the realistic 
situations of two- and three-dimensional optical systems. The results overviewed in 
the present work may find potential applications in the area of controlling or 
routing light in all-optical signal processing devices, and may be extended to other 
dissipative nonlinear systems with complex-valued external potentials [27,48-49].  
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