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Abstract. A double-channel waveguide with gain and loss is addressed and the 
corresponding coupled-mode equations are established by employing the coupled mode 
approach. Based on the coupled-mode equations, the beam dynamics in the double-
channel waveguide with gain and loss is investigated, and the results show that there 
exist three distinct dynamical behaviors, which are amplification, attenuation to zero 
and tending to a steady value (or equilibrium state), respectively. Finally, it is shown 
that the theoretical results suggested by the coupled-mode equations agree well with the 
numerical simulations. 
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1. INTRODUCTION 

Since the concept of parity-time (PT) symmetry was applied to construct 
complex extension of quantum mechanics [1–3], physical systems exhibiting PT 
symmetry have attracted much more attention and have been extensively studied in 
recent years [4–6]. Particularly, in optics, PT-related notions can be implemented in 
PT- symmetric coupler [7–12] and PT-symmetric optical lattices [13–18], and the 
experimental observations have been demonstrated [19–21]. Thus, optics can 
provide a fertile ground to investigate PT-related beam dynamics including the 
non-reciprocal responses, the power oscillations, and the optical transparency. 
Recently, based on the properties in the PT symmetry breaking region, different 
optical components have been theoretically and experimentally realized [22–26]. 
As a natural extension, in this paper, we investigate the optical beam dynamics in a 
double-channel waveguide with gain and loss, and suggest three distinct dynamical 
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behaviors, which are amplification, attenuation to zero and tending to a steady 
value (or equilibrium state), respectively. These results are verified by numerical 
simulations. 

2. MODEL AND REDUCTIONS 

In the context of the paraxial theory of diffraction by involving index guiding 
and a gain/loss profile, the electric field envelope obeys a normalized Schrödinger 
equation as follows 

 
2

2

1i ( ) 0.
2

U x
z k x
∂φ ∂ φ

+ + φ =
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 (1) 

Here ( , )x zφ = φ  is the complex envelope of the electric field, 2
0/(2 )z Z kx=  is a 

scaled propagation distance, and 0/x X x=  is a dimensionless transverse 
coordinate, where 0x  is an arbitrary spatial scale and 0 02 /k n= π λ  is the wave 
number with 0n  being the background refractive index and 0λ  being the 
wavelength of the optical source generating the beam. The function 

2 2
0 0 0( ) 2 [ ( ) ] / ( ) i ( )U x k x n x n n V x W x= − ≡ +  represents the normalized complex 

index distribution, in which the refractive index profile ( )V x  and the gain/loss 
profile ( )W x  are of the form 1 2( ) ( ) ( )V x V x V x= +  and 1 2( ) ( ) ( )W x W x W x= + , 
where 1 ( )V x  and 2 ( )V x  equal to 0V  in the regions of / 2 / 2d D x D− − < < −  and 

/ 2 / 2D x d D< < + , respectively, and 1 2( ) ( ) 0V x V x= =  otherwise, and 

1 1( )W x W= −  and 2 2( )W x W=  in the regions of / 2 / 2d D x D− − < < −  and 
/ 2 / 2D x d D< < + , respectively, otherwise they are zero, as shown in Fig. 1. Here 

0V  is the modulation depth of the refractive index, and 1W  and 2W  are the 
dimensionless gain or loss parameters. Without loss of generality we assume that 

1 0W >  and 2 0W > , which implies that the left-channel in Fig. 1 is a gain-guiding 
waveguide while the right-channel is a loss-guiding waveguide, forming a double-
channel waveguide with gain and loss. Especially, when 1 2W W= , the complex 
index distribution ( )U x  satisfies the PT symmetric condition and has been 
extensively studied [7–12]. Here, we will discuss the case 1 2W W≠ , and explore the 
corresponding optical behavior and characteristics. 
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Fig. 1 – The real part (black solid) and the imaginary part (blue dashed) of the refractive index profile 

of a double-channel waveguide structure with gain and loss. Here D is the separation between the 
double-channel waveguides, and d represents the thickness of the waveguide core. 

In order to investigate the dynamical characteristic of the beam propagation 
in such waveguide, we will employ the coupled-mode approach. We assume that 
the solution of Eq. (1) can be expressed as a superposition of the local modes of the 
individual channels without gain and loss as follows [7] 

 ( ) ( ) ( ) ( )1 2( , ) e ,i zx z a z u x b z u x βφ =  +    (2) 

where ( )a z  and ( )b z  represent the field amplitudes in left- and right-channel 
waveguides, respectively, and ( )j ju u x=  satisfies 2 2d / d ( )j j j ju x V x u u+ = β , 

1, 2j = . By substituting Eq. (2) into Eq. (1) and multiplying by 2 ( )u x−  and 

1 ( )u x−  respectively, and by integrating over the whole space for the variable x , we 
obtain a set of equations for the field amplitudes ( )a z  and ( )b z  in the form 

 
( ) ( ) ( ) ( ) ( )

d
i i i 0,

d a a

a z
a z b z

z
+ δ − γ + κ − σ =  (3) 

 
( ) ( ) ( ) ( ) ( )

d
i i i 0.

d b b

b z
b z a z

z
+ δ+ γ + κ+ σ =  (4) 

Here 12 121 11 122( ) /I J I Jδ = − ∆  represents the phase shift and 12 122 11 121( ) /I J I Jκ = − ∆  
is the real part of the scaled coupling coefficient, which are determined by the 
refractive index; 11 111 211 12 212 112[ ( ) ( )]a I C C I C Cγ = + − +  and [ 12 121 221( )b I C Cγ = + −  

]11 122 222– ( )I C C+  are the effective gain/loss coefficients, and [ 11 121 221( )a I C Cσ = + −  

]12 122 222– ( ) /I C C+ ∆  and 12 111 211 11 212 112[ ( ) ( )] /b I C C I C Cσ = + − + ∆  are the 
imaginary parts of the scaled coupling coefficients, respectively, which are 
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determined by the gain/loss distribution, where 2 2
12 11I I∆ = − , ( ) ( )dmj m jI u x u x x

+∞

−∞
= −∫ , 

( ) ( ) ( )dkmj k m jJ V x u x u x x
+∞

−∞
= −∫ , and ( ) ( ) ( )dkmj k m jC W x u x u x x

+∞

−∞
= −∫ , , , 1, 2k m j = . 

Note that we have used the relations 22 11I I= , 21 12I I= , 212 121J J= , and 211 122J J= . 
Thus we presented a set of coupled-mode equations which can be used to describe 
the optical beam dynamics in the double-channel waveguide with gain and loss. 
Comparing with the corresponding theory of coupled optical PT-symmetric 
structures reported in Ref. [7] (the special case of 1 2W W= ), the local eigenfunction 

( )ju x  in Eq. (2) satisfies the eigenvalue problem for a Hermitian Hamiltonian, i.e., 
2 2d / d ( )j j j ju x V x u u+ = β , 1, 2j = , which does not include the imaginary part 

( )jW x  of the complex index distribution ( )U x  and so is more easy to treat. Thus, 
we can investigate the optical beam dynamics in the double-channel waveguide 
with gain and loss by employing the coupled-mode equations. 

3. DYNAMIC CHARACTERISTICS 

In this section, we will analyze the optical beam dynamics in the double-
channel waveguide with gain and loss. Firstly we consider the case of 1 2W W< , 
which implies that a bσ > σ  and a bγ < γ . Thus one can obtain the solution for Eqs. 
(3) and (4) in the form 

 
( )
( )

( ) ( ) ( ) 0i i

0

e e ei z z za z a
bb z

−δ−γ χ+ ω − χ+ ω    = +        
A B , (5) 

where 0a  and 0b  represent the initial state, and A and B are 2×2 matrices, which 
are given by 
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and ( ) / 2b a±γ = γ ± γ , ( ){ }1/ 21/ 22 2 / 2 ω = µ + ν + µ  
, and 

( ){ }1/ 21/ 22 2 / 2 χ = µ + ν − µ  
, with 2 2

a b +µ = κ + σ σ − γ , and ( )b aν = κ σ − σ . 

Similarly, for the case of 1 2W W> , which implies that a bσ < σ  and a bγ > γ , the 
result is the same except ω  is replaced by −ω . It should be pointed out that when 

1 2W W= , i. e., a bσ = σ  and a bγ = γ , the above results hold too. Indeed, in this case, 
the model (1) can describe the beam propagation in the PT-symmetric double-
channel waveguide [10]. It has been shown that there exists a critical point 

2 2
a aγ = κ + σ  such that below this critical point, i. e., 2 2

a aγ < κ + σ , the 
eigenvalues for the eigenvalue problem of the coupled-mode equations (3) and (4) 
are the real numbers ±λ = δ ± ω  and so the optical beam dynamics exhibits an 

oscillatory evolution behavior because 0χ = . While as 2 2
a aγ > κ + σ  the 

eigenvalues for the eigenvalue problem of Eqs. (3) and (4) become the complex 
numbers i±λ = δ ± χ , which means that a phase transition occurs, hence the 
corresponding total power is exponentially increasing. 

In the following, we discuss the case of 1 2W W≠ . In this case, the eigenvalues 
for the eigenvalue problem of Eqs. (3) and (4) are always complex-valued. Hence 
the beam dynamics may exhibit some different characteristics. When 1 2W W< , Eq. 
(5) can present the total power as follows 

 
( ) ( ) ( )2 2 2 † 2 † i2
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0† i2 † 2
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e e e
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z z
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b

−− γ ∗ ∗ χ ω

− ω − χ

+ = + +
 
+ +  
 

A A B A

A B B B
 (6) 

where ‘†’ represents the transpose conjugation and ‘∗’ represents the complex 
conjugation. From Eq. (6) it can be seen that the parameter ω  represents the 
oscillatory frequency, while the parameters −γ  and χ  are the 
amplification/attenuation factors, which can be used to characterize the asymptotic 
behavior of the optical beam. Also one find that the final three terms in the right-
hand side of Eq. (6) tend to zero as z →∞  due to 0−γ > , therefore the total power 
is exponentially increasing (decreasing) for ( ) − −γ < χ γ > χ , while when −γ = χ , 

the total power tends eventually to a steady value ( ) ( )T†
0 0 0 0, A A ,a b a b∗ ∗  as z →∞ , 

forming an equilibrium state, where the superscript ‘T’ represents the transpose. 
However, for the case of 1 2W W> [note that ω in Eq. (6) should be replaced by −ω  
as 1 2W W> ], there exists no such a steady value and the total power is 
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exponentially amplified due to 0−γ < . Thus it can be suggested that there are three 
distinct evolution characteristics in the double-channel waveguide with gain and 
loss, which are amplification, attenuation to zero and approaching a steady value 
(or equilibrium state), respectively. 
 

 
Fig. 2 – The dependence of −γ  (the black solid curves) and χ  (the red dashed curves) on W1 for:  

a) W2 = 0.02733; b) W2 = 0.0367; c) W2 = 0.05465; d) W2 = 0.06832, where the vertical dotted lines 
represent W1 = W2. Here the system parameters are d = 4µm, D = 4 µm, and V0 = 2.5. 

In order to determine the parameter range for the three distinct beam 
dynamics, we present the dependence of −γ  and χ  on 1W  for the different 2W , as 
shown in Fig. 2, where the parameters are taken as 0 0.5145 mλ = µ , 0 2.797n = , 

0 1 mx = µ , 0.02733W =₂ , 0.0367 , 0.05465 , and 0.06832 , which correspond to the 
actual loss parameters as 14 cm− , 15.372 cm− , 18 cm− , and 110 cm− , respectively.  

From Figs. 2a and 2b, one can see that when 0.0367W ≤₂  the crosspoint of 
−γ  and χ  equals to zero, which corresponds to W W=₁ ₂ (see the inset in Figs. 2a 

and 2b), and we have −γ > χ  in the region of W W<₁ ₂ and −γ < χ  in the region of 
W W>₁ ₂. However, when 0.0367W >₂ , the crosspoint of −γ  and χ  is located in 
the region of W W<₁ ₂, as shown in Figs. 2c and 2d. This fact means that there 
exists a critical value crit

2 0.0367W =  (for our choice of the parameters) so that 
when crit

2 2W W> , the cases of −γ > χ , −γ = χ , and −γ < χ  can appear 
simultaneously for W W<₁ ₂. 



7 Beam dynamics in a double-channel waveguide with gain and loss 1277 

 
Fig. 3 – The range of the three distinct evolution behaviors in W2W1-plane. The blue line represents  
W1 = W2. The red circles represent −γ = χ . Here the system parameters are the same as in Fig. 2. 

Figure 3 summarizes the parameter range for the three distinct beam 
dynamics in W₂W₁-plane. From Fig. 3 one can see that there exists a curve with 

−γ = χ  (see the red circle curve in Fig. 3), on which the optical beam evolution 
behavior is oscillatory or tends eventually to a steady value. Indeed, the curve is 
consisted of two parts, one is located on the line of W W=₁ ₂ on which the beam 
evolution behavior is oscillatory, the other is located in the region of 1 2W W<  on 
which the beam dynamics eventually tends to a steady value.  

Therefore, the critical value crit
2W  should be the PT-symmetry-breaking point. 

Furthermore, one can see that the curve present a boundary, above which the beam 
dynamics exhibits a exponential amplification in the oscillatory form (the white 
region) and below which the beam dynamics is attenuated in the oscillatory form 
(the shadow region). Thus one can implement the distinct evolution behaviors of 
the optical beam in the double-channel waveguide with gain and loss by properly 
choosing the parameters W₁ and W₂. 

In the following, we will verify the three distinct evolution dynamics by 
directly simulating Eq. (1) with the initial states ( )u x₁  and ( )u x₂ , which 
correspond to the initial excitation state (1,0) and (0,1) for Eqs. (3) and (4), 
respectively.  

The results are summarized in Fig. 4 and Fig. 5, respectively, where 
0.05465W =₂ , corresponding to the loss parameter 18 cm− , 0.02W =₁ , 0.024765 , 

and 0.03 , and to the cases of −γ > χ , −γ = χ , and −γ < χ , respectively.  
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Fig. 4 – a), b), c) The evolution plots of the optical intensity given by Eq. (1) with the initial state 
1( )u x  for 1 0.02W = , 0.024765 , and 0.03  respectively; d), e), f) are the corresponding total power, 

where the black curves are the analytical results given by Eq. (6) and the blue circles are the 
numerical results by simulating Eq. (1) with the initial state 1( )u x . Here 2 0.05465W =   

and the other parameters are the same as in Fig. 2. 

 
Fig. 5 – a), b), c) The evolution plots of the optical intensity given by Eq. (1) with the initial state 
2 ( )u x  for 1 0.02W = , 0.024765 , and 0.03  respectively; d), e), f) are the corresponding total power, 

where the black curves are the analytical results given by Eq. (6) and the blue circles  
are the numerical results by simulating Eq. (1) with the initial state 2 ( ).u x  Here 2 0.05465W =  

and the other parameters are the same as in Fig. 2. 
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Three distinct asymptotic behaviors are exhibited: Figs. 4a and Fig. 5a 
indicate the oscillatory decaying behavior, Figs. 4c and Fig. 5c present the 
exponential amplification behavior, while Figs. 4b and Fig. 5b show that the optical 
beam tends to a equilibrium state with an increasing of the propagation distance, 
which corresponds to the case of −γ = χ . Also, Figs. 4d–f and Figs. 5d–f present 
the evolution plots of the total power, and the results show that the analytical 
values agree well with the corresponding numerical ones. 

Furthermore, we also performed calculations for the equilibrium state for 
different values of 2W . The obtained results show that the steady value is 
decreasing with the increase of 2W , as illustrated in Fig. 6, and the theoretical 
analytical results agree well with the corresponding numerical ones. 

 

 
Fig. 6 – The dependence of the steady value on 2W . Blue and red curves represent the analytical 

results corresponding to the initial excitation states (1, 0) and (0, 1), respectively. Blue circles and red 
circles are the numerical results. Here the system parameters are the same as in Fig. 2. 

4. CONCLUSIONS 

In summary, we have presented the coupled-mode equations for a double-
channel waveguide with gain and loss by employing the coupled mode theory. 
Based on the coupled-mode equations, we have suggested that there exist three 
distinct dynamical behaviors, which are exponential amplification, exponential 
attenuation to zero and tending to a steady value, respectively, and we have 
presented their parameter range. Finally, it has been shown that the theoretical 
results suggested by the coupled-mode equations agree well with the corresponding 
numerical simulations. These unique properties may be used to control the 
transmission behavior of the optical beam by properly choosing system’s 
parameters. 
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