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Abstract. A brief summary of the calculated and experimental ground state-
ground state α-half-lives of the superheavy nuclei with Z=102-120 is presented. The
shell model rate theory is used to calculate α-decay half-lives in terms of of the cluster-
ing and scattering amplitudes. Special attention is given to the shell structure and the
resonance scattering effects in the decay channel. Theoretical results are confronted to
data and other relevant estimates. First systematics of α-decay properties of SHN was
performed by studying the half-life vs. energy correlations in terms of atomic number
and mass number. Such a systematics shows that the transitions between even-even
nuclei are favored, while all other transitions with odd nucleons are prohibited. The
accuracy of theoretical calculations is discussed
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1. INTRODUCTION

The last few years brought impressive progress in synthesizing and studying
properties of superheavy nuclei (SHN). Both the amount and quality of experimental
data on the nuclear energy levels and decay modes of SHN have increased tremen-
dously [1–15]. The review [16] gives a brief historical overview of the discovery of
SHN, the present status and the possibilities for future discoveries.

Among the fundamental properties of SHN the ones which should be estab-
lished first are possible radioactive decay modes, partial half-lives, and their relative
probabilities. The data reveal that the dominant decay modes for the SHN is α-
emission, not fission. There are several efforts to correlate existing α-decay data on
empirical basis in order to give insight into the nature of the process. However, on
this way is difficult to correlate data with the evolutions of nuclear structure observ-
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ables. The main features of the nuclear structure can be revealed by observing the
evolution of some basic quantities that characterize the nucleus [17].

Detailed α-decay studies [18–23] provide the access to the basic properties of
SHN: masses, energy levels, lifetimes, spins, moments, reaction energies and emis-
sion rates. Moreover, α-decay has become a powerful tool to explore the nuclear
structure (fine structure, shell effects, α clustering and deformation) and also of the
most important aspects of reaction mechanisms (resonance tunneling, phase transi-
tions and channel coupling). α-decay of SHN has yielded much energy level infor-
mation for nuclear spectroscopy and it is one of the most useful probes for studying
the structure of the SHN [24]. Detailed experimental and theoretical studies of SHN
are revealing new competing decay modes and complex nuclear structures involving
weakly bound states coupled to an environment of scattering states.

The knowledge of properties of these nuclei helps to elaborate and improve
theoretical models which may be used to predict radioactive properties of unknown
species. Such predictions can be made with a fair degree of confidence and this may
help in the preparation and identification of new SHN.

Fig. 1 – Chart of nuclides for elements heavier than nobelium. The grey-scale coding refers to the
decade of discovery. This figure is taken from ref. [16]

2. SHELL MODEL RATE THEORY

The approach used here to describe the α-decay process is presented in [23,24].
The procedure is to match smoothly [25] the shell model (SM) wave functions of four
individual nucleons (Ik[SM ]

n (r) with the outgoing α-particle wave function (from
the resonance state k in channel n) which is a general solution of the system of
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These equations define an α-particle of given kinetic energyQα and angular momen-
tum l moving in the potential Vnm(r). The solutions of the above system represent
the radial motion of the fragments at large and small separations, respectively, in
terms of the reduced mass of the system m, the kinetic energy of emitted particle
Qα = Qn = E −ED −Eα, the FA Ikn(r), and the matrix elements of interaction
potential Vnm(r).

The effective decay energy used in the above relations is

Qα =
A

A−4
Eexpα +
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6.53Z

7/5
d −8.0Z

2/5
d

)
10−5 (3)

where, A is the mass number of the parent nucleus, Eexpα is the measured kinetic
energy of α-particle, and the second term is the screening correction [26].

The matrix elements Vnm(r) include nuclear and Coulomb components [27]
defined with the quadrupole (β2) and hexadecapole (β4) deformation parameters of
the daughter nucleus.To avoid the usual ambiguities encountered in formulating the
potential for the resonance tunneling of the barrier we iterate directly the nuclear
potential in the equations of motion [27, 28].

The SM α-particle formation amplitude (FA) is defined as the antisymmetrized
projection of the parent wave function on the channel wave function:

Ik[SM ]
n (r) = r〈ΨSM

k (ri) | A
{[

ΦSM
D (η1)Φp(η2)Ylm(r̂)

]
n

}
〉, (4)

where ΦSM
D (η1) and Φα(η2) are the internal (space-spin) wave functions of the

daughter nucleus and of the particle, Ylm(r̂) is the wave function of the angular mo-
tion, A is the inter-fragment antisymmetrizer, r connects the centers of mass of the
fragments, and the symbol 〈 | 〉 means integration over the internal coordinates and
angular coordinates of relative motion.

The shell model overlap integral (Eq.4) is estimated for the harmonic oscil-
lator single particle wave functions of the parent and daughter nuclei by using the
numerical codes based on analytical formulas [23] (for the passing from individual
coordinates ri to the center of mass r, and ρ1ρ2ρ3 coordinates). For nuclei with
Z = 102−120 we use single proton states [29]: 1i13/2,2f7/2,2f5/2,3p3/2,3p1/2; and
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for nuclei withN = 150−178 single neutron states: 2g9/2,2g7/2,3d5/2,3d3/2,4s1/2.
Fig.2 shows an example of the shell model overlap integral which is dependent on
the angular momentum of the α-particle emitted.
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Fig. 2 – The overlap integral computed with harmonic oscillator wave functions for the s.p.
configurations (2[2f7/2]p, 2[2g7/2]n) in function of the c.m. distance between the α-particle and

daughter nucleus.

The α-decay width is given by:

Γk[SM ]
n = 2π
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, (5)

where the lower limit in the integrals is an arbitrary small radius rmin > 0, while the
upper limit rmax is close to the first exterior node of u0n(r).

The α half-life is expressed as:

T k[SM ]
n = ln2 · ~

Γ
k[SM ]
n

(6)

The α half-lives derived from Eqs.(6)-(7) depend on the nuclear single particle
wave functions and finite sizes of nucleons and α particles. Also these half-lives
include the corrections terms due to screening and resonance scattering effects(see
for details [25]).

Finally, the α half-life should be corrected by even-odd terms he−o extracted
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from the available decay data.

logT k[SM ]
n (s) =⇒ logT k[SM ]

n (s) +he−o (7)

2.1. SYSTEMATICS OF α HALF-LIVES

Interest in the systematics of decay properties starts with the first observations
[30] and studies [31] of the natural radioactivity, when it becomes clear that there
exists a relationship between the half-life and α-energy. Thus, the α-decay properties
have been correlated in terms of a few parameters [32,34] which are determined from
the fit of decay data. Presently, we compare the systematics of experimental and
calculated α-half lives in order to see the accuracy of the calculations in describing
the α-decay data.

In Fig.3 are plotted the data for (e-e), (e-o), (o-e) and (o-o) nuclei relating the
α half-life and energy (logTα and Z0.6

d Q
−1/2
α ) in which lines of a given parity (Z,N )

are shown. With a few minor irregularities the experimental half-lives fall on a series
of four distinct lines which are near parallel. Fig.3 presents an important distinction
between the (e-e) - line (1) and (o-o) - line (4) nuclei, namely the half lives of the later
nuclei are significantly larger than the first ones. The lines (2) and (3) corresponding
to (e-o) and (o-e) nuclei which are very close to each other are situated in between
the lines (1) and (4). The nuclei with odd nucleons show long half-lives as compared
with the (e-e) nuclei. The large rms values observed in Fig.3 denote significant
errors in the data or a low statistics.

From the calculated results in Figs. 4, 5 and 6 (using the measured emission
energies) it seems to be a general rule for α-decay that α-transitions from odd nu-
clei are prohibited in comparison with the ones from even nuclei. It is important to
note that the general trend of the data with Z0.6

d Q
−1/2
α ) is well reproduced by the

calculated results using the SM rate theory (Fig.4) and empirical results (Figs. 5 and
6) obtained from Eqs. (8) and (9). Again, these calculations show that the α-decay
involving unpaired nucleons (Z,N )=(e-o,o-e,o-o) proceeds more slowly than that of
paired nucleons (Z,N )=(e-e). The straight lines which correspond to different model
approximations in Figs.4-6 are parallel and this fact denotes a common dynamical be-
haviour described by different reaction models. In fact, the same dependence of the
barrier penetrability on the energy is assumed by these models, P ∼Q−1/2α .

We prove that the study of α-decay properties of the SHN in terms of mass
number A and atomic number Z reveals interesting regularities and correlations.
Thus, the values logTα plotted vs. Q−1/2α fall on straight lines for the isotopes of
a given element Z (Geiger-Nuttall law).

The values logTα plotted vs. Z0.6
d Q

−1/2
α (Brown law) fall now on the four

straight lines which correspond to possible four distinct combinations (Z,N ): (e,e),
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(e,o), (o,e), and (o,o). In this plot the all α-emitters are ordered in respect with the
parity of the proton and neutron numbers.

If comparing the calculated values of α half-lives (Figs. 4, 5 and 6) with the
experimental ones (Fig.3) the conclusions are summarized as follows:

1. A good agreement between TSM (Fig.4) and T exp (Fig.3) is observed especially
for emitters situated near the closed shells (Z=108, N=162 and Z=114, and N
approaching 184) [24].

2. TSM (Fig.4) values are somewhat larger than the T exp, T V S and TB values.

3. The fit parameters in Figs.4 and 5 have very close values and similar standard
errors.

4. The α-decay involving unpaired nucleons (Z,N) =(e-o, o-e, o-o) always pro-
ceeds more slowly than that involving paired nucleons (Z,N) =(e-e).
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Fig. 3 – The logT expα values [1–15] are plotted vs. Z0.6
d Q

−1/2
α . The straight lines represent the best

fit to the all known logT expα values for a certain parity (Z, N ).

Many approaches and methods were employed in theoretical investigation of
SHN. Thus, the generalization of the Geiger-Nuttall law has been obtained starting
either from the microscopic [35–37] or macroscopic [38] mechanisms of the charged
particle radioactivity. The proposed systematics of α-properties coincides, to a large
extent, with our shell model rate systematics.
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Fig. 4 – The logTSMα values calculated with Eq.(7) are plotted vs. Z0.6
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represent the linear fit to the all logTSMα values corresponding to a certain parity (Z, N ).
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Fig. 5 – The logTV Sα values calculated with Eq.(8) (which has the even-odd correction he−o
included) plotted vs. Z0.6
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α . The straight lines represent the linear fit to the all logTV Sα values

associated to a certain parity (Z, N ).
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These new results in the systematics of decay properties illustrate how the dis-
covery of SHN gives us new nuclear structure information at the limits of stability.

3. CONCLUDING REMARKS

Up to now, more than 90 nuclides have been synthesized in spite of the ex-
tremely low fusion cross sections. Many nuclear properties of these nuclides have
been measured and investigated theoretically. The shell structure is very important
for the stability of SHN. This is observed first in the single-particle spectrum where
the occurrence of the shells separated by energy gapes. The α-decay properties ap-
pear correlated strongly with the structure of extreme nuclei, but are determined to
a large extent, by the assembly of the Fermi nucleons in the α-particle. The shell
model has been shown to be very useful for the understanding the detailed features
of α-decay, such as lifetimes, branching ratios and fine structure.

The systematics of experimental and calculated α half-lives reveals either some
measurement errors, either a lower accuracy of the theory or models, for whose
events with a large scatter from the Geiger-Nuttall or Brown laws.

In summary, this work presents a systematization of α-decay half-lives for all
of about 90 observed cases of α-emitters in SHN. The systematics in two distinct
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variants provides a good description of α-half-lives in the agreement to the data.

4. APPENDIX

Here we consider two phenomenological formulas. The first is the Viola-
Seaborg formula [32] which reads as

logTα(s) = (aZd+ b)Q−1/2α + (cZd+d) +he−o (8)

where Qα is the decay energy in MeV units, Zd is the charge number of daugh-
ter nucleus; a,b,c,d are parameters and he−o is an even-odd hindrance term. The
parameters used are from Ref. [33]: a = 1.66175; b = −8.5166; c = −0.20228;
d = −33.9069, he−e = 0.0 (Z=even, N=even); ho−e = 0.772 (Z=odd, N=even);
he−o = 1.066 (Z=even, N=odd); ho−o = 1.114 (Z=odd, N=odd) .

The second one is the Brown formula [34] written as

logTα(s) = 9.54Z
(0.6)
d Q−1/2α −51.37 +he−o (9)

the constants being determined from the best linear fit of 119 data points (Tα, Qα) in
a range of Zd from 74 to 106 for even even nuclei.
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