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Abstract. We discuss the scattering of a light pulse by a single atom in free
space using a purely semi-classical framework. The atom is treated as a linear elastic
scatterer allowing to treat each spectral component of the incident pulse separately. For
an increasing exponential pulse with a dipole radiation pattern incident from full solid
angle the spectrum resulting from interference of incident and scattered components is
a decreasing exponential pulse.∗

1. INTRODUCTION

Recent experiments devoted to the coupling of single two-level emitters to the
light field in free space have been mainly concerned with the scattering of monochro-
matic coherent laser beams [1–6]. In these experiments the incident light field has
been so weak that the steady-state population of the emitter’s excited state was negli-
gible.

Unlike in the above cases, experiments with non-monochromatic incident light
fields have been performed in Refs. [7,8]. In Ref. [7] the incident light field was con-
stituted by a constant stream of single photons from a source molecule, i.e. pulses
with an exponentially decaying temporal envelope having a spectral width matching
the one of the transition of the target molecule. These pulses are expected to create a
non-negligible excited state population [9]. However, this quantity has not been mea-
sured in Ref. [7]. Instead, the extinction of the photon stream has been monitored.
In Ref. [8] the incident radiation was a coherent state light pulse with an increasing
exponential envelope and a finite amount of atomic excitation was measured.

Here, we want to establish a link between elastic scattering experiments – usu-
ally prohibitive of atomic excitation – and the absorption of single photons or weak

∗This paper is dedicated to Professor Valentin Vlad at the occasion of his anniversary in 2013. His
merits in promoting science in Romania are widely recognized and appreciated.



2 Scattering of an exponential pulse by a single atom 639

coherent state pulses. To do so, we treat the atom as a driven harmonic oscillator
with a driving force that is weak enough to keep the oscillator’s response in the li-
near regime. This approach is motivated by the close analogy between a coherently
driven classical harmonic oscillator and a single atom driven by a single photon [10].
We will decompose a light pulse into its spectral components. Each of these com-
ponents constitutes a monochromatic wave. It is assumed that the scattering of each
of these waves is completely elastic, enabling interference with the corresponding
incident spectral component. The resulting spectrum then determines the temporal
response of the atom.

Of course, this treatment is not applicable to cases where more than a single
photon is contained in the incident pulse. As is evident from fully quantum mecha-
nical treatments [11], the upper state population and hence the electromagnetic field
will exhibit Rabi oscillations. This is clearly not covered by the treatment discussed
in this paper. However, even a pulse containing the energy of a single photon re-
sonant with the atomic transition induces a non-negligible amount of excited state
population. For such a pulse with an effective length of the excited state lifetime,
the Rabi frequency can be as large as twice the spontaneous emission rate [12]. This
corresponds to a saturation parameter of S = 8, i.e. an excited state population of
ρee = 4/9. This finding suggests that the calculations presented below are only mean-
ingful for pulses containing much less than a single photon, e.g. strongly attenuated
coherent states as prepared in Refs. [8, 13].

However, the value of ρee obtained from S is a steady state quantity. On the
time scale of the excited state lifetime – and single photon pulses used in free space
experiments are typically of this duration – the steady state is not yet reached. Rather
the excited state population has yet to build up from zero. Therefore, one could
expect that the fully elastic treatment is justified during almost the complete duration
of the pulse, especially if the amplitude of the incident pulse itself increases slowly.
This is the case for exponentially increasing pulses, which have been predicted to
excite an atom with full efficiency [9, 11, 14].

The paper is organized as follows: In the next section we will briefly revisit the
scattering of a monochromatic wave. Then in Sec. 3 this framework will be applied to
all spectral components of an exponentially increasing pulse, yielding the spectrum
of the temporal atomic response. The paper will close with a brief discussion.

2. SCATTERING BY AN ATOMIC DIPOLE

At first, the scattering of a monochromatic wave by an atomic dipole is re-
viewed. The atom is taken as a two-level system and considered to be in the steady
state under the monochromatic driving field. The derivation of the respective formu-
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las is given in Ref. [15]. Here we just recall the results relevant to this paper.
The power scattered by the atom is given by

Psc =
4P ·Ωη2

(4∆2/Γ2 + 1)(1 +s)2
. (1)

P is the power of the incident beam. Ω is the solid angle of the focused field weighted
by the angular intensity pattern I(ϑ,φ) of the atomic transition dipole moment [16]:

Ω =

∫
φfoc

∫
ϑfoc

I(ϑ,φ)sinϑdϑdφ

8π/3
. (2)

It is given as a normalized quantity (0≤Ω≤ 1) with the case Ω = 1 corresponding to
focusing from full solid angle. η is the spatial mode overlap of the incident field with
the field emitted by the atomic dipole. The overlap is integrated over and normalized
to only the part of the solid angle covered by the incident beam. ∆ = ω−ω0 is
the detuning from the atomic resonance ω0, and Γ is the spontaneous emission rate.
Finally, s is the saturation parameter which depends on all of the other parameters
given above, see Ref. [15]. However, since here we are interested in the regime of
elastic scattering we set s= 0 and have

Psc =
4P ·Ωη2

4∆2/Γ2 + 1
. (3)

This equation is equivalent to the findings of Refs. [17–19], once one identifies the
quantity 4Ωη2 with the scattering ratio used in these papers.

Psc can be written as Psc = const.×|Esc|2, where Esc =Asc ·eiϕsc is the com-
plex amplitude of the dipole wave scattered by the atom. Neglecting proportionality
constants, we can write Asc =

√
Psc, i.e.

Asc =
2A ·
√

Ωη√
4∆2/Γ2 + 1

, (4)

where A=
√
P is the modulus of the incident field amplitude. ϕsc is the phase of the

the scattered wave relative to the phase of the incident field. It is given by [15, 17]

ϕsc = arctan

(
2∆

Γ

)
+
π

2
, (5)

as has been confirmed in a recent experiment [20]. With Asc and ϕsc we have all
quantities at hand that are needed to calculate the field resulting from the superposi-
tion of incident field and scattered field.

In almost all of the recent experiments dealing with light-matter interaction in
free space, the light scattered by the atom and the incident radiation are collected by
optics spanning nominally the same solid angle fraction as the device focusing the
incident radiation. The part of the solid angle not covered by the collection optics is
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governed by the scattered field alone. The power emitted into this part of the solid
angle is

Psc,Ω = (1−Ω) · Γ2 ·Ωη2

∆2 + Γ2/4
·A2 (6)

with the corresponding complex field amplitude

Esc,Ω =
Γη
√

Ω(1−Ω)√
∆2 + Γ2/4

·Aeiϕsc . (7)

The fraction of the scattered power emitted towards the collection optics is

Psc,Ω =
Γ2Ω2η2

∆2 + Γ2/4
·A2 . (8)

In this solid angle fraction, where the scattered light interferes with the rediverging
incident light, an additional π/2 shift related to the Gouy phase has to be consi-
dered [4, 6, 17, 21]. We do this by writing

ϕsc = arctan

(
2∆

Γ

)
+π . (9)

The corresponding field amplitude is

Esc,Ω =
ΓηΩ√

∆2 + Γ2/4
·Aeiϕsc . (10)

We assume that all of the incident radiation is collected as well. However, only a part
of the scattered radiation can interfere with the incident field. The corresponding
power fraction is proportional to η2. Thus, the field component due to interference is

EΩ,coh =
Γη2Ω√

∆2 + Γ2/4
·Aei(ϕsc+ϕ0) +Aeiϕ0 , (11)

where we have also allowed for some arbitrary relative phase ϕ0 of the incident field.
The corresponding power reads

PΩ,coh =

[
1 +

Γ2

∆2 + Γ2/4

(
Ω2η4−Ωη2

)]
·A2 . (12)

For completeness, we also give the respective expressions for the fraction that
does not interfere with the incident field. The complex field amplitude reads

EΩ,incoh =
ΓΩη

√
1−η2√

∆2 + Γ2/4
·Aeiϕsc (13)

with the corresponding power

PΩ,incoh =
Γ2Ω2η2(1−η2)

∆2 + Γ2/4
·A2 . (14)
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Fig. 1 – Illustration of the different power fractions involved in elastic scattering by a single atom. The
incident field is focused from a solid angle fraction Ω with power P . In transmission, the incident field
interferes with the scattered field, with the solid angle fraction on which the interference occurs again
being Ω. Since the spatial mode overlap between scattered and incident field is in general not perfect,
one has to account for a power fraction PΩ,coh due to this interference and a remaining fraction of the
scattered light with power PΩ,incoh. The light scattered into part of the solid angle complementary to

the transmission one is of power Psc,Ω.

With some algebra it is easy to check that energy is conserved. The meaning of the
different power fractions is illustrated in Fig. 1.

3. INCIDENT PULSE WITH INCREASING EXPONENTIAL ENVELOPE

In the following we treat the case of an incident wave with carrier frequency
ω0 and an exponentially increasing intensity envelope. The time constant of the
exponential shall be the life time of the upper atomic state and the wave ends at
t= 0. The time dependent field amplitude of such a wave is given byA0 ·exp(Γt/2) ·
H(−t) with H(t) being the step function. The spectrum of this wave is given by

S(∆) =A0 ·
1

Γ/2 + i∆
(15)

with the spectral amplitudeA(∆) =A0/
√

∆2 + Γ2/4 and the relative spectral phase
ϕ0(∆) = arctan(−2∆/Γ).

For this incident pulse spectrum the resulting spectral field amplitudes can be
written as

Esc,Ω(∆) =A0 · i
ηΓ
√

Ω(1−Ω)

∆2 + Γ2/4
, (16)

EΩ,incoh(∆) =A0 · i
ΓΩη

√
1−η2

∆2 + Γ2/4
, (17)
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EΩ,coh(∆) =A0 ·
Γ(1/2−Ωη2)− i∆

∆2 + Γ2/4
. (18)

The last term can be rewritten as

EΩ,coh(∆) =A0×
[
(1−Ωη2) · Γ/2− i∆

∆2 + Γ2/4
+ Ωη2 · −Γ/2− i∆

∆2 + Γ2/4

]
. (19)

The first term of this sum is again the spectrum of the incident increasing exponential
pulse but weighted with a proportionality factor (1−Ωη2). The second term which
scales with Ωη2 is also the spectrum of an exponential pulse, but for one with a
decaying envelope that starts at t= 0. In other words, the spectral components of the
latter term are the phase conjugated versions of the incident components. Although
we have assumed that the scattering is completely elastic, i.e. there is no upper
state population, we interpret this exponentially decaying fraction as absorbed and
spontaneously re-emitted photons.

The spectral amplitudes in Eqns. (16) and (17) correspond to a field envelope
that is increasing with exp(Γ/(2t)) for t < 0 and decreasing with exp(−Γ/(2t))
for t > 0. This is obvious from the expansion Γ = (Γ/2 + i∆) + (Γ/2− i∆) in the
numerator of these equations, yielding the sum of the spectra corresponding to the
above temporal pulse shapes. The interpretation of this spectrum is straightforward:
As long as the incident pulse is nonzero, Esc,Ω is given by the elastically scattered in-
cident wave with increasing exponential envelope. For t > 0 there is no incident field
amplitude, hence the exponential decay is again interpreted to ’mimic’ spontaneous
emission. The same interpretation applies to EΩ,incoh. In a recent experiment [8] the
light scattered by a single atom into the backward solid angle (1−Ω) has been mea-
sured for focusing from Ω = 0.11. The temporal evolution obtained for exponentially
increasing coherent state pulses containing three photons on average resembles the
double sided exponential corresponding to the spectrum in Eq. (16).

Summing up the power of all exponentially decaying contributions of EΩ,coh,
EΩ,incoh and Esc,Ω and normalizing to the total power shows that the power fraction
in the temporally decaying signal is given by Ωη2. This suggests to interpret Ωη2

as the absorption probability of an exponentially increasing pulse that is temporally
’mode-matched’ to the atomic transition, which is in accordance with the findings of
Ref. [13].

In the limit of focusing from full solid angle, Ω = 1, Esc,Ω naturally vanishes.
If then also the spatial mode matching becomes perfect, η = 1, also EΩ,incoh and
the first term of EΩ,coh become zero. In other words, the remaining spectral field
components are completely given by the spectrum of an exponentially decaying field.
This is the same result one would obtain from a fully quantized treatment of the
absorption of a single photon by a single atom, if the incident single photon is the
time reversed version of a spontaneously emitted photon [9]. We note that the results
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obtained here are also analogous to the ones obtained for the response of an empty
Fabry-Perot resonator [10], which constitutes a fully classical problem.

4. DISCUSSION

By using a fully elastic treatment in describing the scattering of light by single
atoms, we have derived the electric field spectrum arising from scattering an increas-
ing exponential pulse. The obtained results suggest to interpret the response as a
field arising via spontaneous emission, which only occurs after absorption of a pho-
ton. Recent experiments [8] confirm the expected validity of our framework in the
regime of low average photon numbers. Nevertheless, one has to take into account
that in the reported experiment roughly 11% of the solid angle was used for focusing.
This means that also the coupling efficiency is limited by this value [12, 13]. There-
fore, it is not surprising that qualitative agreement with the model presented here is
observed, since approximately only every ninth photon interacts with the atom. It
will therefore be interesting to compare our theory to the experiments prepared in
Refs. [13, 22], where the coupling will occur from almost full solid angle and with
large expected mode overlaps [13]. Using the experimental parameters, the relative
magnitudes of the exponentially increasing and decreasing fractions should resemble
the achieved absorption efficiency. Moreover, increasing the average photon num-
ber of the coherent state pulses used in the experiment will identify the boundary of
validity of the fully elastic model presented here.

REFERENCES
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