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Abstract. The goal of this paper is to improve our previous model; which considered the 
thermal fields for laser-periodic multilayer structures interaction. Our new model, based 
on the assumption of a weak interaction, takes into account non-linear effects like two 
photon absorption. It is assumed that the laser beam is in the IR and the interaction 
between the laser field and target (for example optical components) is weak, thus one 
can consider a small variation for the laser intensity.  The Green function method, is 
used since it is a more adequate technique to solve the heat equations. Since the heat 
equation is a linear one in the sense that we have two solutions of the heat equation, 
than the sum of solutions is also a solution of the same heat equation, it is possible to 
use this property in order to “manipulate” the heat equations. Our approach is for a 1D model. 
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1. INTRODUCTION 

Many practical applications require the detailed study of the thermal behavior 
of various systems. The difficulties arise when these systems are inhomogeneous 
with respect to the parameters involved in the heat diffusion process. Currently, the 
heat diffusion equation has no analytical solution for this case. However  a wide 
range of methods exist to approximate the solution of the heat diffusion equation in 
inhomogeneous systems, starting from the numerical methods and ending with the 
exact analytical solution for a few particular cases, each of them in turn presenting 
specific advantages and disadvantages [1-6]. 
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2. THE THEORETICAL BACKGROUND REGARDING GREEN 
FUNCTION METHOD 

 The Green function method is used to generalize the model found in the 
literature [7].  The case considered is that where the direction of heat transfer is 
perpendicular to several layers in series. We introduce the effective thermal 
conductivity for this multilayer medium as [7]: 
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where l is the total thickness of this medium structure.                                
Similarly, the effective thermal conductivity for heat flows in a parallel 

direction is:                 
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where A is the area of the near or far faces. 
For most materials, the heat flux in one direction is only caused by the 

temperature gradient in that direction. In this case, the heat equation in equilibrium 
can be written as: 
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where , ,x y zK K K : are thermal conductivity along x, y, z directions. ( , , )A x y z : is 
the heat source of the equation. Because we are considering, in this paper, a solid 
without melting, we can neglect the blackbody radiation of the sample. 
We introduce the linear temperature by the expression:  
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wherein the above equation, ( )Tθ  and 0( )Tθ are the linearized temperatures at a 
temperature T and at a substrate temperature 0T . 

It can be observed now that the variation of the linear temperature is equal to 
the variation of the usual temperature when K is independent of T, an assumption 
which is reasonable for a weak interaction. The linear temperature obtained now 
for the heat equation is [7]: 
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where K
Kg ⊥=

 
and ( ),K K T=  /P I w=  is the normalized incident power, R ⊥  is 

the surface reflectivity when the incident beam is perpendicular to the layer 
structure of the substrate and 0T  is the original substrate temperature before the 
laser irradiation. 

The function ( )f ⊥ ξ is defined by: 
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with: 'xX w= , 'yY w= and zZ w= , which are the normalized coordinates of the 

system. Here w represents the waist of the laser beam. 

3. THE THEORETICAL TREATMENT FOR THE CLASSICAL  
AND SEMI-CLASSICAL HEAT EQUATIONS 

 In this chapter we will obtain a heat equation, considering the case of a 
double-layer structure (the layers are identical geometrically i.e., two serial 
parallelepipeds) which is continuously irradiated with a CO2 laser beam.  The laser 

beam has a Gaussian shape and we assume: d 1I
I

. This assumption is valid for 

very low linear absorption coefficients; which is our case. 
We will use the linearity of the heat equation in order to reach our goal which 

is the determination of the two photon thermal fields in during a laser-multilayer 
weak interaction. We consider z to be the direction of the laser beam propagation. 

We have then: 

 ( ) ( ) ( )( ) ( ) ( )( )2
0 , , , , , ,  , , ,     ,A x y z t I x y z t I x y z t h t h t t= α ⋅ + β − −  (7) 

where x, y, z are the spatial coordinates, t is the time, t0 is the exposure time during 
the irradiation and h is the step-function. The one photon absorption coefficient and 
the two absorption coefficient are α and β respectively.  

The semi-classical heat equations for  layer 1and respectively layer 2, are: 
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and 
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Here γ1 and γ2 are the thermal diffusivities. 
If we consider that the both layers merge at z = 0, we have at the contact 

plane, the following boundary condition: 
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and 

 1 2( , ,0, ) ( , ,0, )T x y t T x y t= .    (9.b) 
If we consider that: 1 2γ ≈ γ 1 2and K K≈ , the both heat equation could be 

replaced by one general heat equation: 
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If we use now the linearity of the heat equation, we can split the above 
equation into: 
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where:  

 T T Tα β= + . (12) 

Now we make two reasonable physical assumptions: i) we are interested only 
in the steady state solution and in consequence in equations (8), (10) and (11) we 
can neglect the temperature derivative with respect to time; and ii) the thermal 
conductivities along the x, y ,z axes are equal.  For these conditions we have a 
perfect compatibility between equations (3) and (8), (10), (11). Thus using these 
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conditions, we linked between the theories from chapter 2 and the theories from 
chapter 3, and may use formula (5) for solving the heat equation. 

4. SIMULATIONS 

We consider a system consisting of equal pieces of GaAs (the first bulk 
sample which interact with the laser beam) and ZnTe with geometrics of: 

2 1 2 4mml l l= = =  and: 2
1 2 4mmA A A= = = . In this case the following results 

are obtained. From the bulk thermal conductivity, one can calculate K ⊥ and K
 

using the relations [7]: 

 2
( )

GaAs ZnTe
GaAs ZnTe

K K
K KK +⊥ = ,      ( )

2
GaAs ZnTeK KK += .         

All the results are considered when the steady state is reached. The source we 
consider is a Gaussian cwCO2 laser at 10.6 mµ  (waist of 1mmx yw w w= = = ), and 
intensity of I = 108W/cm2.       

We will use the values from [8-10]: for GaAs, α1= 0.00001mm-1, 
β1 = 0.35cm/MW, kGaAs = 0.04W/(mmK) and for ZnTe: α2 = 0.00003mm-1, 
β2 = 0.5cm/MW, kZnTe = 0.02W/(mmK); We suppose for simplicity that ⊥R = 0. We 
consider in using equation(5) that the power is given for the case of two photon 
interaction by: 2( )P I I= − α + β . 

We consider also, following the technique from reference [11] that: 

 GaAs ZnTe×Tanh [ ] [ ] ×Tanh [ ] [ ] 0.00002z H z z H zα = α ⋅ − + α ⋅ + , (13) 

and 

 GaAs ZnTe×Tanh [ ] [ ] ×Tanh [ ] [ ] 0.45.z H z z H zβ =β ⋅ − +β ⋅ +   (14) 

In reference [11], we give a full discussion regarding the use of Tanh[z] for making 
a smooth transition of the absorber coefficients at z = 0). Here H represents the step 
function. The one- and two- absorption coefficient we have plot the figures 1 and 2. 
To solve the heat equations we have used formula (5).  

We present in Fig. 3, the thermal field produced by just one-photon absorption.  
We present in Fig. 4, the thermal field produced by just two-photons 

absorption. One may observe that the thermal field produced by just two photon 
absorption is clearly detectable in this case. In Fig. 5, we plot the thermal field 
produced by one- and two-photons absorption mechanisms. 

It is obviously the fact that one-photon absorption is more important in the 
heat equation than the effects produces by only two-photon fields. 
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Fig.1 – The “global” one-photon absorption coefficient ([–4, 0] interval is located the GaAs sample, 

and from [0, 4] interval the ZnTe sample; the GaAs sample is the first heated by the laser beam). 

 
Fig. 2 – The “global” two-photon absorption coefficient. ([-4, 0] interval is located the GaAs sample, 

and from [0, 4] interval the ZnTe sample; the GaAs sample is the first heated by the laser beam). 
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Fig. 3 – The thermal field produced by just one-photon absorption. 

 

 Fig. 4 – The thermal field produced by just two-photon absorption. 
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Fig. 5 – The thermal field produced by one and two-photon absorption. 

5. CONCLUSIONS 

 We have studied the bulk properties of ZnTe and GaAs during laser 
irradiation deriving a model which assumes a weak laser-target interaction. 
In this paper, the model has been used to analyze the temperature increase upon 
laser irradiation of two serial pieces of different materials and also determine if the 
two photons absorption mechanism can produce a detectable temperature variation. 
The calculation showed that it is possible to thermal detects the two photons 
interaction even in the case when the laser-solid interaction is weak. 
 To solve the heat equations we use two major mathematical tools: i) the 
Green function method and ii) the linearity of the heat equation obtaining thus an 
analytical solution. 
 We make also a thermal analysis as a function of contact interface length 
between GaAs and ZnTe. Our simulations indicate [12] that a shorter interface 
length do not affect the general thermal fields but change in an observable measure 
the thermal fields in the proximity of interface (z = 0).  

In our model we consider that we have a steady state situation and also that 
the exchange between target and its surrounding media is null, which means that 
we have the conditions of very high vacuum. 
 A comparison between the Green function method and the integral transform 
may be found reference [13]. 
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