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Abstract. I introduce a spinor field theory for the photon. The three-dimensional vector 
electromagnetic field and the four-dimensional vector potential are components of this 
spinor photon field. A spinor equation for the photon field is derived from Maxwell’s 
equations, the relations between the electromagnetic field and the four-dimensional 
vector potential, and the Lorentz gauge condition. The covariant quantization of free 
photon field is done, and only transverse photons are obtained. The vacuum energy 
divergence does not occur in this theory. A covariant “positive frequency” condition is 
introduced for separating the photon field from its complex conjugate in the presence of 
the electric current and charge. 
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1. INTRODUCTION 

 The electromagnetic interaction is the best studied one among the four known 
fundamental interactions. In the frame of quantum theory, the photon is the 
quantum of the electromagnetic field. There are several ways to represent the 
electromagnetic field: by the three-dimensional electric field and magnetic field 
vectors, by the 4 4×  electromagnetic tensor, or by the four-dimensional potential 
vector [1, 2]. The electric and magnetic fields are directly related to the energy 
density of the electromagnetic field. The four-vector potential is directly related to 
the Lagrangian density of interaction. But however, none of these fields can be 
regarded as the photon field, because the photon density can not be expressed as 
inner products of these fields with their adjoint fields. In this paper, I introduce the 
spinor photon field that satisfies a spinor equation similar to the Dirac equation for 
the electron. The three-dimensional vector electric field, the three-dimensional 
magnetic vector field and the four-dimensional vector potential are components of 
this spinor photon field. The spinor equation for the photon field is based on the 
Maxwell equations, the relations between the electromagnetic field and the four-
dimensional vector potential, and the Lorentz gauge condition. The Lagrangian 
densities for the free photon field and for the photon field in interaction with the 
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matter are established. Covariant quantization of photon field is carried out, and 
only transverse photons emerge from the quantization procedure. The vacuum state 
of the photon field is found to have null energy. The solution for the photon field in 
the presence of the electric current and charge is found, and a covariant “positive 
frequency” condition is introduced for separating the photon field from its complex 
conjugate. 

The Maxwell equations, the relations between the electromagnetic field and the 
four-dimensional vector potential, and the Lorentz gauge condition are rewritten as 
two eight-component spinor equations in Sec. 2. The spinor photon field is 
introduced in Sec. 3. The quantization of the photon field is treated in Sec. 4, and 
the photon field in the presence of electric current and charge is analysed in Sec. 5. 

2. THE SPINOR EQUATION FOR THE ELECTROMAGNETIC FIELD 

 Maxwell’s equations for the electric and magnetic fields E  and H  in the 
presence of a charge density ρ  and a current density j  can be written in the 
following form: 

 ( ) ( )0 0 0
0x
∂

ε = ∇× µ − µ
∂

E H j , (1) 

 ( ) ( )0 0
0x
∂

µ = −∇× ε
∂

H E , (2) 

 ( )00 = −∇ ⋅ µ H , (3) 

 ( )0 00 = ∇ ⋅ ε − ε ρE , (4) 

where 0ε  is the vacuum permittivity, 0µ  is the magnetic permeability of the 
vacuum, and 0 = ct.x  Because the electric field, the magnetic field, the current 
density and the charge density are real quantities, they are completely described by 
their positive frequency components. An alternative way for writing the above 
equations is to introduce an eight components spinor electromagnetic field and an 
eight components spinor electric current density defined by 

  ( )0 1 0 2 0 3 0 1 0 2 0 3

( )

( ) ( ) ( ) 0 ( ) ( ) ( ) 0

em

T

x

E x E x E x H x H x H x

ψ =

ε ε ε µ µ µ
 (5) 

and 
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 ( )0 1 2 3 0( ) ( ) ( ) 0 0 0 0 ( ) T
ej j x j x j x j x= µ , (6) 

where ( )( ) ( ), ( )j x c x x= ρ j  is the four-vector current density.  
The Maxwell equations (1-4) now can be written as 

 
0

( ) ( ) ( )em e em ex x j x
x
∂

ψ = − ⋅∇ψ −
∂

α , (7) 

where 
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0 0 0 0 0 0

0 0 0 0 0 0

0 0 0
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0 0 0
0 0 0
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e

i I
i I
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i I

i
i

i
i

− σ −   
   − σ   α = α =
   σ
      σ −   

σ 
 − σ α =
 − σ
  σ 

 (8) 

with 

 2 2

0 1 0
and .

0 0 1
i

I
i
−   

σ = =   
   

 (9) 

We have 

 2 , , 1, 2,3.em en en em mn m nα ⋅α + α ⋅ α = δ =  (10) 

The electromagnetic field can be described by the four-vector potential 
( )( ) ( ) / , ( )A x x c x= φ A . The relation between the electric and magnetic fields and 

the four-vector potential, and the Lorentz gauge condition can be written as: 

 ( ) ( )0 0 0 0
0

1A
x c
∂

ε = −∇ ε − ε
∂

A E , (11) 

 ( )0 0
10
c

= ∇× ε − µA H , (12) 

 ( ) ( )0 0 0
0

A
x
∂

ε = −∇ ⋅ ε
∂

A . (13) 

The relations (11–13) can be rewritten as 
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0

1( ) ( ) ( )a e a emx x x
x c
∂

ψ = ⋅∇ψ − ψ
∂ =

α , (14) 

where the spinor potential field ( )a xψ  is defined by 

 ( )0
1 2 3 0( ) ( ) ( ) ( ) 0 0 0 0 ( ) .T

a x A x A x A x A x
ε

ψ =
=

 (15) 

One may observe that the equation (14) also holds if we replace the Lorentz 
gauge condition with the following one: 

 ( ) ( )0 0 0 8
0

1
emA

x c
∂

ε = −∇ ⋅ ε − ψ
∂

A , (16) 

where 8emψ  is an arbitrary scalar constant. In this case, the spinor electromagnetic 
field takes the following form 

 
( )0 1 0 2 0 3 0 1 0 2 0 3 8

( )

( ) ( ) ( ) 0 ( ) ( ) ( ) ( ) .

em

T

em

x

E x E x E x H x H x H x x

ψ =

ε ε ε µ µ µ ψ
(17) 

According to properties of the electric field ( )xE , magnetic field ( )xH , and four-
vector potential ( )A x  under continuous space-time transformations, we have the 
following relation for ( )em xψ  and ( )a xψ  under a Lorentz transformation 

 ( )( ) exp ( ),em emx x′ ′ψ = − ⋅ ψφ l  (18) 

and 

 ( )( )( ) exp ( ),a e ax x′ ′ψ = ⋅ − ψφ α l  (19) 

where 

 ln 1 ln 1 .v v
v c c
 

= + − −  
 

vφ  (20) 

Under a rotation characterized by the rotation angle φ , expressed as an axial 
vector, we have 

 ( )( ) exp ( ),em emx i x′ ′ψ = ⋅ ψsφ  (21) 

and 

 ( )( ) exp ( ),a ax i x′ ′ψ = ⋅ ψsφ  (22) 
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with 

 
0 0

, ,
0 0

i
i

   
= =   −   

Σ Σ
s l

Σ Σ
 (23) 

and 

 1 2 3

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

, , .
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

i i
i i

i i

−     
     −     Σ = Σ = Σ =
     −
          
     

 (24) 

The following commutation relation holds for s : 

 
3

1
[ , ] .n m nmp p

p
s s i s

=

= ε∑  (25) 

Equations (7) and (14) are invariant under continuous space-time 
transformations (See the Appendices). 

3. THE PHOTON FIELD 

One can use ( )em xψ  or ( )a xψ  to represent the electromagnetic field, but it 
is not possible to express the photon density as an inner product of ( )em xψ  or 

( )a xψ  with its adjoint field. Therefore neither ( )em xψ , nor ( )a xψ  can be 
regarded as the photon field. The concept of photon is closely related to 
monochromatic electromagnetic plane waves, so we consider a monochromatic 
plane wave 

 ( ), ( ) exp( )k k
em ax x ikxψ ψ ∝ −  (26) 

in the absence of electric current and charge. Let ( )k
em x+ψ  and ( )k

a x+ψ  be the 
positive frequency parts of ( )k

em xψ  and ( )k
a xψ . We find that the inner product 

† ( ) ( )k k
em emx x+ +ψ ψ  is equal to the time average of energy density, which should equal 

to, in the case of a monochromatic wave, the product of the photon density and the 
photon energy 0ck= . On other hand, we have 

 * *
0 0( ) ( ) ( ) ( )k k k kx x x x+ + + +ε ⋅ = µ ⋅E E H H †1 ( ) ( )

2
k k

em emx x+ += ψ ψ  (27) 

and 
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 * * *

0

1( ) ( ) ( ) ( ) ( ) ( )k k k k k ki x x i x x x x
ck

+ + + + + +⋅ = − ⋅ = ⋅E A A E E E , (28) 

thus the photon density is equal to 

 † †( ) ( ) ( ) ( )k k k k
a em em ai x x i x x+ + + +− ψ ψ + ψ ψ . (29) 

We have 

 ( )† † † †
2

( )
( ) ( ) ( ) ( ) ( ) ( ) ,

( )

k
emk k k k k k

a em em a em a k
a

x
i x x i x x x x

x

+
+ + + + + +

+

ψ 
− ψ ψ + ψ ψ = ψ ψ τ  ψ 

 (30) 

where 

 4
2

4

0 0
with ,

0 0
e

e
e

i I
i I

β   
τ = β =   − β −  

 (31) 

and 4I   is the 4 4×  unit matrix. 
Based on the relation (30), we define the photon field ( )f xψ  as 

 
( )

( )( )
0

4
4

0

( )1( ) d exp
( )2

em
f

ak

x
x k ik x x

x>

′ψ 
′ψ ≡ −  ′ψπ  

∫ . (32) 

One may observe that the condition 0 0k >  is covariant for the free photon field, 
because it does not contain Fourier components with 0k < k . According to Eqs. 
(7) and (14), the free photon field satisfies the following equation: 

 
0

( ) ( ) ( )f w f f
ii x i x x

x c −
∂

ψ = − ⋅∇ψ − β ψ
∂
= =α , (33) 

with 

 
8

0 0 0
, ,

0 0
e

w
e I−

   
= β =   −   

α
α

α
 (34) 

where 8I  is the 8 8×  unit matrix. 
The invariance of Eq. (33) under continuous space-time transformations is 

assured by the invariance of Eqs. (7) and (14). We have 

 ( )( ) exp ( ),f fx x′ ′ψ = ⋅ ψφ Λ  (35) 

with 

 
0

0 e

− 
=  − 

l
Λ

α l
 (36) 
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for Lorentz transformations, and 

 ( )( ) exp ( ),f f fx i x′ ′ψ = ⋅ ψsφ  (37) 

under space rotations, where 

 
0

.
0f
 

=  
 

s
s

s
 (38) 

Eq. (33) is invariant also under space inversion and time reversal. It is easy to 
verify that 0 0( , )f xτ ψ −x  and 3 0( , )f xτ ψ − x  satisfy the same spinor equation  
Eq. (33) as 0( , )f xψ x , where 

 0 3

0 0
,

0 0
e e

e e

−β β   
τ = τ =   −β −β   

. (39) 

The equation for the free photon field can be derived from the following 
Lagrangian density 

 0 f w f f fi c i
t −

∂ = ψ + ⋅∇ ψ + ψ β ψ ∂ 
= αL , (40) 

where  †
2( ) ( )f fx xψ = ψ τ  is the adjoint field. 

One may observe that there are a total of 15 component equations for photon 
field. Among these 15 equations only 11 equations are independent, and the other 4 
equations (corresponding to Eqs. (2) and (3)) are a direct conclusion of these 11 
equations. By means of variational calculation, all these 11 independent equations 
can be obtained. 

The conjugate field of fψ  is 

 0 .f f
f

i
∂

π = ψ
∂ψ

=
�
L

=  (41) 

The Hamiltonian now can be calculated: 

 
( )

( )

3
0 0

3

d

d .

f

f w f

H

i c i −

= πψ − =

= ψ − ⋅∇ − β ψ

∫
∫

�

=

x

x α

L
 (42) 

The Lagrangian density (40) is invariant under a global phase change of the 
photon field ( )f xψ . This implies the conservation of the photon number N  for 
free photon field: 
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 3dphN = ρ∫ x  (43) 

and 

 0,ph pht
∂
ρ + ∇ ⋅ =

∂
j  (44) 

where the photon density phρ  is given by the inner product between the photon 
field ( )f xψ  and its adjoint ( )f xψ : 

 ( ) ( ) ( )ph f fx x xρ = ψ ψ  (45) 
and 

 ( ) ( )ph f w fc x x= ψ ψj α  (46) 

is the photon current density. One may observe that the photon density defined by 
Eq. (45) may take negative values. But however, when we talk about photons we 
refer to electromagnetic fields with well-defined frequencies. By direct calculation, 
one can verify that 0phρ ≥  if ( )f xψ  has a well-defined frequency. 

According to the relation between symmetries and conservation laws [3, 4], 
we may obtain the following expressions for the momentum P  and the angular 
momentum M  of the free photon field: 

 3d f fi= − ψ ∇ψ∫=P x  (47) 

and 

 [ ] ( )3 3d ( ) d .f f f f fi= ψ × − ∇ ψ + ψ ψ∫ ∫= =M x x x s  (48) 

It is clear that fs  can be interpreted as the spin operator of the photon field. 
According to expression (25), we have 

 
3

1

[ , ] , , 1, 2,3.fn fm nmp fp
p

s s i s n m
=

= ε =∑  (49) 

4. QUANTIZATION OF THE PHOTON FIELD 

It is convenient to quantize the photon field in the momentum space. To do 
this, we have to find firstly the plane wave solutions of the photon field. By 
substituting the following form of solution  

 ( ) ( )( ) expf x ikx wψ ∝ − k  (50) 
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into the spinor equation (33), we find 

 0 ( ) 0.w
i

k w
c
−β ⋅ − − = 

 =
α k k  (51) 

Eq. (51) permits two independent nontrivial solutions with 0k = k . They can be 
chosen as 

 

( ) ( ) ( ) ( )(
( ) ( ) ( )

)

1 1 1 2 2 3 3

1 1 2 2 3 3

1 1 2 2 3 3

1 0
2

0

0 0 0 0 0 ,T

w c q ir c q ir c q ir
c

c r iq c r iq c r iq

iq r iq r iq r

± = ± ± ±

− ± − ± − ±

= = =
=
= ∓ = ∓ = ∓

k k k k

k k k  (52) 

where q  and r  are two unity vectors satisfying the following conditions: 

 ( ) ( )ˆ ˆ ˆ, , , and ,× = × = − × = − = −k q r k r q q r k r k r k  (53) 

with ˆ / .=k k k  
 ( )1w + k  and ( )1w − k  are orthogonal: 

 ( ) ( ) ( ) ( )†
2 .h h h h hhw w w w′ ′ ′= τ = δk k k k k  (54) 

We also have 

 ( ) ( ) ( )ˆ , 1,f h hw hw h⋅ = = ±k s k k  (55) 

and 

 ( ) ( ) ( )2 ( 1) 2 .f h h hw s s w w= + =s k k k  (56) 

Therefore photons are particles of spin 1s = . One may also observe that the 
components in ( )1w + k  and ( )1w − k corresponding to 8emψ  are zero, so the 
Lorentz gauge condition is re-obtained. 

Having plane wave solutions of the photon field ( )f xψ , we may now 
expand ( )f xψ  in plane waves 

 

( ) ( )

( ) ( )†

1( ) ,

1( ) ,

ikx
f h h

h

ikx
f h h

h

x e w b
V

x e w b
V

−ψ =

ψ =

∑∑

∑∑

k

k

k k
k

k k
k

 (57) 
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with 0k = k . According to relations (40) and (57), the Lagrangian of the photon 
field can be expressed as a function of the variables k ( )hq t : 

 ( ) ( )†
0 ( , ) ,h h

h
L t q q t i c q t

t
∂ = − ∂ 

∑∑ = k k
k

k  (58) 

with 

 ( ) ( ) ( ) 0exp , .h hq t b i t ck= − ω ω =k k  (59) 

The conjugate momentum of ( )hq tk  can be calculated, and we have 

 ( ) ( ) ( ) ( )†0 exp .h h
h

L
p t i b i t

q t
∂

= = ω
∂

=
�k

k

k  (60) 

By applying the quantization condition [ ],h h hhq p i ′ ′= δ δ=k k kk , we find the 
following commutation relation for ( )1b ± k  and ( )†

1b ± k  

 ( ) ( )†, .h h hhb b ′ ′ ′′  = δ δ  kkk k  (61) 

( )1b ± k  and ( )†
1b ± k  are just the photon annihilation operator and the photon 

creation operator. The Hamiltonian of the photon field can also be calculated. We 
obtain 

 ( ) ( )†
0 0 .h h h h

h h
H p q L b b= − = ω∑∑ ∑∑� =k k

k k
k k  (62) 

We observe that the vacuum energy of the photon field is zero. 
The commutation relations for the photon field can be written in a covariant 

form. According to the commutation relations (61) and the expression (57), we 
have 

 † ( ), ( ) ( ), with , 1, 2, ,8,fl fm lmx x D x x l m′ ′ ψ ψ = − =  "  (63) 

where the 8 8×  matrix ( )D x  is given by the following expression 

 ( )
( )

( ) ( ) ( )
0

4 2
03

0

d .
2 2

ikx

k

cD x k k k e−

>

 = δ ⋅ + ⋅ ⋅ π ∫
= k l k l k l  (64) 

The replacement 

 
( )

3
3

1 1 d
2V

→
π

∑ ∫
k

k  (65) 
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was used in obtaining the relation (63). Under Lorentz transformations, ( )D x  
transforms to 

 ( ) ( ) ( ) ( )exp exp .D x D x′ ′ = − ⋅ − ⋅φ l φ l  (66) 

One can verify with no difficulty that by using the expansions (57), the 
commutation relations (61) can be derived from commutation relation (63). 
Therefore, the commutation relations (61) and (63) are equivalent. 

5. INTERACTION BETWEEN PHOTON FIELD AND MATTER 

 In the presence of electric current and charge, according to Eqs. (7) and (14), 
we have the following equation for the photon field: 

 
0

( ) ( ) ( ),f w f f
ii x i x i J x

x c −

∂  ψ = − ⋅∇ − β ψ − ∂  
= = =α  (67) 

where the spinor current density ( ) fJ x is given by 

 
( )

( ) ,
0

e
f

j x
J x

+ 
=  
 

 (68) 

and ( )ej x+  satisfies the relation 

 *( ) ( ) ( ).e e ej x j x j x+ ++ =  (69) 

It would be natural to request that the spinor current density ( ) fJ x  to have only 

positive frequency Fourier components. But the spinor current density ( )ej x+  may 
contain Fourier components with 0k>k , and for these Fourier components this 
separation does hold for all frames of reference. In other words, the positive 
frequency condition is not covariant. A covariant form of this condition can be 
written as: 0kp > , where p  is a well-defined 4-vector. For each physical system, 
there always is a well-defined 4-vector, namely the total energy-momentum  
4-vector of the system. Therefore, we have 

 ( )4 4 ( )
d ( ) d ,

0
eikx ikx

f

j x
x e J x kp x e

+ 
= θ  

 
∫ ∫  (70) 

with 

 
1 if 0

( ) 1/ 2 if 0 ,
0 if 0

z
z z

z

>
θ = =
 <

 (71) 
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and ( )0 ,p p= p  the total energy-momentum 4-vector of the photon field and the 
charged matter field under consideration. One may observe that, in the “centre of 
mass” frame in which the total momentum p  of the whole system in interaction is 
zero, ( ) fJ x  have only positive frequency Fourier components. 

It is easy to verify that the equation (67) can be derived from the following 
Lagrangian density 

 0 int( ) ( ) ( )fx x x=L L + L , (72) 

with the Lagrangian density of interaction given by 

 † †
int 2 2( ) ( ) ( ) ( ) ( ) .f

f f f fx i c x J x J x x = ψ τ − τ ψ =L  (73) 

According to the definition of ( ) fJ x , we have 

 3
0d d

V

x
∞

−∞∫ ∫ x † *
2 2( ) ( ) ( ) ( ) 0T

f f f fx J x J x x ψ τ − τ ψ =  . (74) 

Therefore it is not necessary to separate ( ) fJ x from * ( ) fJ x in the Lagrangian 
density of interaction, and the equation (67) can also be derived from the following 
Lagrangian density 

 0 int( ) ( ) ( ),x x x=L L + L  (75) 

where the Lagrangian density of interaction is given by 

 † †
int 2 2( ) ( ) ( ) ( ) ( ) ,f s s fx i c x J x J x x = ψ τ − τ ψ =L  (76) 

with 
 *( ) ( ) ( ).s f fJ x J x J x= +  (77) 

According to the relation between the photon field ( ) f xψ  and the four-vector 
potential ( ) fA x , the Lagrangian density of interaction int ( )xL  can also be written 
as 
 †

int ( ) ( ) ( ) ( ) ( ),f fx A x j x j x A x= − −L  (78) 

where ( ) fA x  is the “positive frequency” part of ( )A x : 

 ( )4 4d ( ) d ( ).ikx ikx
fx e A x kp x e A x= θ∫ ∫  (79) 

One may observe that if ( ) j x  commutes with ( ) fA x  and † ( ) fA x , the 

Lagrangian density of interaction int ( )xL  would become ( ) ( )j x A x− , as in the 
classical electrodynamics. 
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The equation (67) can be solved. We have 

 0 4( ) ( ) d ( ) ( ),f f f fx x x G x x J x′ ′ ′ψ = ψ + −∫  (80) 

where 0 ( ) f xψ is the free photon field given by expressions (57), and ( )fG x  is the 
Green function for the photon field: 

 ( )
( )

( )4
04 2

exp1 d .
2

f w

i ikx i
G x k k

k i c
−− − β = + ⋅ − + ε  π ∫ =

α k  (81) 

6. CONCLUSION 

I introduced a spinor field theory for the photon. The spinor equation for the 
photon field is equivalent to Maxwell’s equations together with the relations 
between the four-vector potential and electric and magnetic fields, and the Lorentz 
gauge condition for the 4-vector potential. The quantization of free photon field is 
done, and only transverse photons are obtained. The vacuum energy divergence 
does not occur in this theory. The solution for the photon field in the presence of 
the electric current and charge is found, and a covariant “positive frequency” 
condition is introduced for separating the photon field from its complex conjugate. 

APPENDIX A: INVARIANCE OF SPINOR EQUATIONS FOR 
ELECTROMAGNETIC FIELD AND POTENTIAL UNDER LORENTZ 

TRANSFORMATIONS 

By direct verification, one may find the following relations for matrices s  
and l : 

 
3

1

[ , ] , , 1, 2,3,n em nmp ep
p

s i n m
=

α = ε α =∑  (A1) 

and 
 ( )1 , , 1, 2,3.en m en m nm eml l n mα α = − − δ α =  (A2) 

Let’s consider a Lorentz transformation 

 

1 1

2 2

3 3

0 0

cosh 0 0 sinh
0 1 0 0

.
0 0 1 0

sinh 0 0 cosh

x x
x x
x x
x x

′ ϕ − ϕ    
    ′    =
    ′
        ′ − ϕ ϕ    

 (A3) 
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We have 

 
1 1 0 0 0 1

cosh sinh , cosh sinh
x x x x x x
∂ ∂ ∂ ∂ ∂ ∂

= ϕ − ϕ = ϕ − ϕ
′ ′ ′ ′∂ ∂ ∂ ∂ ∂ ∂

 (A4) 

and 

 1 1

1

( ) cosh ( ) sinh ( ),
( ) cosh ( ) sinh ( ).

j x j x c x
c x c x j x

′ ′ ′ ′= ϕ + ϕ ρ
′ ′ ′ ′ρ = ϕ ρ + ϕ

 (A5) 

The last relations can be written in the terms of ( )ej x  and ( )ej x′ ′ : 

 ( )( )1 1( ) exp ( ).e e ej x l j x′ ′= ϕ − α  (A6) 

By using the relations (A4), the equation (7) can then be written as the following: 

 

( )

( )

1
0

1 2 3
1 2 3

cosh sinh ( )

cosh sinh ( ) ( ) 0.

e em

e e e em e

x
x

x j x
x x x

∂
ϕ − ϕα ψ +

′∂

 ∂ ∂ ∂
ϕα − ϕ + α + α ψ + = ′ ′ ′∂ ∂ ∂ 

 (A7) 

Because 

 ( )1 1exp cosh sinh ,e e−ϕα = ϕ − ϕα  (A8) 

so 

 

( )

( )

( )( )

1
0

1 1 2 3
1 2 3

1 1

exp ( )

– exp ( )

– exp ( ).

e em

e e e e em

e e

x
x

x
x x x

l j x

∂
−ϕα ψ =

′∂

 ∂ ∂ ∂
= −ϕα α + α + α ψ = ′ ′ ′∂ ∂ ∂ 

′ ′= ϕ − α

 (A9) 

But 
 1 1 1 1 ,e el lα = α  (A10) 

we then have 

 

( ) ( )( )

( ) ( )

1 1 1 1
0 1

2 3 1 1
2 3

exp ( ) exp

exp exp ( ) ( ) 0.

em e e

e e em e

l x l
x x

l l x j x
x x

∂ ∂
−ϕ ψ = − α + −ϕ − α ×′ ′∂ ∂

 ∂ ∂ ′ ′× α + α ϕ −ϕ ψ − = ′ ′∂ ∂   

(A11) 



15 The spinor field theory of the photon 333 

According to the relation (A2), we have 

 ( )1 1 1 , 2,3,nn
em e eml l mα = − α α =  (A12) 

therefore 

 
( ) ( )( )

( ) ( )( )
1 1 1

1 1 1

exp exp ,

exp exp , 2,3,
em e em

em em e

l l

l l m

α ϕ = ϕ − α α

ϕ α = α ϕ − α =
 (A13) 

and the equation (A11) becomes 

 
0

( ) ( ) ( ),em e em ex x j x
x
∂ ′ ′ ′ ′ ′ ′ψ = − ⋅∇ψ −
′∂

α  (A14) 

with 

 ( )1( ) exp ( ).em emx l x′ ′ψ = −ϕ ψ  (A15) 

The equation (A14) in the new reference frame has exactly the same form as 
Eq. (7), this means the spinor equation for the electromagnetic field is invariant 
under Lorentz transformations. The invariance of Eq. (14) can be shown in a 
similar way. We have 

 
( ) ( )

( )

1 1 1
0 1

2 3 1
2 3

exp ( ) exp

1( ) exp ( ).

e a e e

e e a em

x
x x

x l x
x x c

∂ ∂
ϕα ψ = α ϕα +′ ′∂ ∂

∂ ∂ ′ ′+ α + α ψ − ϕ ψ′ ′∂ ∂  =

 (A16) 

But 

 ( ) ( )( )1 1 1exp exp , 2,3,em em el l m−ϕ α = α ϕ α − =  (A17) 

thus Eq. (A16) can be reduced to 

 
0

1( ) ( ) ( ),a e a emx x x
x c
∂ ′ ′ ′ ′ ′ ′ψ = ⋅∇ψ − ψ
′∂ =

α  (A18) 

with 

 ( )( )1 1( ) exp ( ).a e ax l x′ ′ψ = ϕ α − ψ  (A19) 

This equation has exactly the same form as Eq. (14). 
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APPENDIX B: INVARIANCE OF SPINOR EQUATIONS  
FOR ELECTROMAGNETIC FIELD AND POTENTIAL UNDER SPACE 

ROTATION 

Let’s consider an infinitesimal space rotation 

 
3

0 0
, 1

, , 1, 2,3.n n nmp m p
m p

x x x x x n
=

′ ′= = − ε δ =∑  (B1) 

We have 

 
3

, 1

, 1, 2,3,nmp m
m pn n p

n
x x x=

∂ ∂ ∂
= + ε δ =

′ ′∂ ∂ ∂∑  (B2) 

and 

 
3

, 1

( ) ( ), ( ) ( ) ( ), 1, 2,3.n n nmp m p
m p

x x j x j x j x n
=

′ ′ ′ ′ ′ ′ρ = ρ = + ε δ =∑  (B3) 

The last relation is equivalent to 

 ( )( ) 1 ( ).e ej x i j x′ ′= − ⋅δ s  (B4) 

The equation (7) can be written as 

 

( )

( )

0

3

, 1

1 ( )

1 ( ) ( ).

em

en nlm l em em e
l m n

i x
x

i x j x
x=

∂
+ ⋅ ψ =

′∂

  ∂ ′ ′= − + ⋅ α − ε δ α ψ −  ′∂ 
∑

δ s

δ s
 (B5) 

But 

 
3

1
, , 1, 2,3,nlm em l en en l

m
is i s l n

=

ε α = α − α =∑  (B6) 

so 

 
3

, 1
, 1, 2,3.nlm l em en en

l m
i i n

=

ε δ α = ⋅ α − α ⋅ =∑ δ s δ s  (B7) 

Then Eq. (B5) becomes 

 ( ) ( )
3

10

1 ( ) 1 ( ) ( ).em en em e
n n

i x i x j x
x x=

∂ ∂ ′ ′+ ⋅ ψ = − α + ⋅ ψ −
′ ′∂ ∂∑δ s δ s  (B8) 
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 On the other hand, we have ( )( ) 1 ( )em emx i x′ ′ψ = + ⋅ ψδ s , so we rewrite Eq. 
(B8) as 

 
0

( ) ( ) ( ),em e em ex x j x
x
∂ ′ ′ ′ ′ ′ ′ψ = − ⋅∇ψ −
′∂

α  (B9) 

which has exactly the same form as Eq. (7). So the spinor equation for the 
electromagnetic field is invariant under space rotations. The invariance of Eq. (14) 
can be demonstrated exactly in the same way. 
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