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Abstract. We develop a model based on the fractional exclusion statistics (FES)
applicable to non-homogeneous interacting particle systems. Here the species repre-
sent elementary volumes in an (s+1)-dimensional space, formed by the direct product
between the s-dimensional space of positions and the quasiparticle energy axis. The
model is particularly suitable for systems with localized states. We prove the feasibility
of our method by applying it to systems of different degrees of complexities. We first
apply the formalism on simpler systems, formed of two sub-systems, and present nu-
merical and analytical thermodynamic calculations, pointing out the quasiparticle pop-
ulation inversion and maxima in the heat capacity, in contrast to systems with only diag-
onal (direct) FES parameters. Further we investigate larger, non-homogeneous systems
with repulsive screened Coulomb interactions, indicating accumulation and depletion
effects at the interfaces. Finally, we consider systems with several degrees of disorder,
which are prototypical for models with glassy behavior. We find that the disorder pro-
duces a spatial segregation of quasiparticles at low energies which significantly affects
the heat capacity and the entropy of the system.

Key words: fractional exclusion statistics; non-homogeneous system; screened
Coulomb interaction; heat capacity.

1. INTRODUCTION

The concept of fractional exclusion statistics (FES), which is a generalization
of the Pauli exclusion principle, was introduced by Haldane in Ref. [1] and the sta-
tistical mechanics of FES systems was formulated by several authors, employing dif-
ferent methods [2–7]. Other generalizations of the Bose and Fermi statistics include
the Gentile’s statistics [8, 9], obtained by fixing the maximum occupation number
of a single-particle state, anyonic statistics [10–14], which is connected to the braid
group, and q-deformed statistics, concerning systems of particles in arbitrary dimen-
sions which satisfy quon algebras [15].

The FES was applied to quasiparticle excitations at the lowest Landau level in
the fractional quantum Hall effect, spinon excitations in a spin-12 quantum antifero-
magnet [1, 4, 16], Bose and Fermi systems described in the thermodynamic Bethe
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ansatz [5, 17–19], excitations [1] or motifs of spins [20, 21] in spin chains, elemen-
tary volumes obtained by coarse-graining in the phase-space of a system [5, 22–27],
interacting particles described in the mean-field approximation [28–31], etc. Generic
FES systems in different numbers of dimensions or interacting with external fields
have also been studied for example in Refs. [32–40]. Correlations in FES systems
have been calculated in [41]. In Refs. [28, 42] it was shown that systems of constant
density of states with equal and diagonal FES parameters have the same thermody-
namic properties under canonical conditions. This property extends the Bose-Fermi
thermodynamic equivalence in 2D systems discovered long time ago [43–45], to the
FES systems [46].

A stochastic method for the simulation of the time evolution of FES systems
was introduced in Ref. [47] as a generalization of a similar method used for Bose
and Fermi systems [48] whereas the relatively recent experimental realization of the
Fermi degeneracy in cold atomic gases have renewed the interest in the theoretical
investigation of non-ideal Fermi systems at low temperatures and their interpretation
as ideal FES systems [37, 38, 49–51].

The FES formalism was amended to include the change of the FES parameters
at the change of the particle species [24, 52] and this allows the implementation of
FES as a general method to describe interacting particle systems as ideal gases of
quasiparticles [20, 21, 25, 26, 31, 53, 54]. Moreover, FES was applied also to systems
of classical particles in Refs. [55, 56].

In this paper we present the procedure of describing systems of particles with
long-range interaction as ideal FES systems. The method was introduced briefly in
Refs. [31,53] and we apply it here to systems consisting of randomly and (in general)
non-uniformly distributed localized states which can be occupied by particles. The
particle-particle interaction potential depends only on the distance r between the par-
ticles, like for example the screened Coulomb interaction, V (r) ∝ exp(−r/λ)/rγ .
We define the quasiparticle energies and the fractional exclusion statistics parame-
ters. Using these we write the FES equations for equilibrium particle distribution. In
Ref. [31] it was shown that the solution provided by the FES equations is equivalent
to the standard solution by Landau’s Fermi liquid theory (FLT). We show here the
feasibility of the FES method by solving numerically the FES equations for a vari-
ety of one-dimensional systems, with homogeneous and non-homogeneous particle
distributions.

This method may find applications in glassy systems such as the Coulomb
glasses, systems of bosons trapped in optical lattices, but also to mesoscopic transport
in an already implemented Monte Carlo framework [47].

Another FES method for the description of one-dimensional systems of parti-
cles which occupy localized states, was proposed in [57]. It is not our purpose to
compare the two methods here, but they may be complementary to each other. Our
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method may describe systems of particles with long range interaction in any num-
ber of dimensions, with non-homogeneous sites distributions and different energies
per site, but assumes a large number of particles and sites within the range of the
particle-particle interaction (see also Refs. [31, 53]). On the other hand, the me-
thod of Ref. [57] describes one-dimensional homogeneous lattice gases of the same
energy per site, on the basis of statistically interacting vacancy particles. The method
is accurate for any range of the particle-particle interaction and is especially suitable
for extracting the distributions of spaces between individual particles.

The structure of the paper is as follows. In the following subsection we intro-
duce briefly the notations and the basic concepts of FES. In Section 2 we introduce
our model, in which species are elementary volumes in the (s+1)-dimensional space
formed by the direct product between the s-dimensional space of positions, Ω, and
the energy axis, ϵ or ϵ̃. These species are related by FES parameters, which we calcu-
late. We prove the feasibility of the method by applying it to a few physically relevant
systems of different complexities. First we apply it to homogeneous systems of par-
ticles interacting by repulsive (screened) Coulomb potentials. Then, in Section 3, we
apply our formalism on a few test cases with reduced number of species, which are
analytically tractable in order to capture essential features of interacting inhomoge-
neous systems. Next, the accumulation and depletion of particles subject to screened
Coulomb interactions is investigated in larger, non-uniform systems, and interface
phenomena are emphasized. Finally, systems with several degrees of disorder are
considered and the spatial segregation of quasiparticles is pointed out together with
its consequences in the thermodynamic behavior.

1.1. BASIC DEFINITIONS

A FES system consists of a countable set of species, indexed by i, j=0,1,2, . . ..
Each species contains a finite number of single-particle states and particles, denoted
by Gi and Ni, respectively. The number of states in the species depend on the number
of particles. For small variations of the number of particles around some reference
distribution, {Ni}i=0,1,..., the number of states changes by

δGi =−
∑
j

αijδNj , (1)

where by δNi we denote the particle variations and αij’s are called the FES parame-
ters [1].

The FES parameters must satisfy certain rules [21,24,52,55], namely if we split
an arbitrary species, j, into a number of sub-species, j0, j1, . . ., then all the parameters
αkl, with both, k and l different from j, remain unchanged, whereas the rest of the
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parameters must satisfy the relations:

αij = αij0 = αij1 = . . . , for any i, i ̸= j (2a)

αji = αj0i+αj1i+ . . . , for any i, i ̸= j (2b)

αjj = αj0j0 +αj1j0 + . . .= αj0j1 +αj1j1 + . . .= . . . (2c)

These rules are satisfied by the ansatz [24, 27],

αij = α
(e)
ij +α

(s)
i δij , (3a)

where the parameters α(e)
ij , called the “extensive” parameters, are proportional to Gi,

α
(e)
ij ≡ aijGi. (3b)

The parameters α(s)
i refer to only one species and do not depend on Gi.

The number of microscopic configurations compatible to a given distribution
of particles on species, {Ni}, is

W (−)({Ni}) =
∏
i

(G
(−)
i +Ni−1)!

Ni!(G
(−)
i −1)!

or W (+)({Ni}) =
∏
i

G
(+)
i !

Ni!(G
(+)
i −Ni)!

, (4)

if the particles are bosons or fermions, respectively.
If for each species of particles, say species i, we associate an energy, ϵi, and a

chemical potential µi, then the equilibrium particle distribution, n(±)
i ≡Ni/G

(±)
i , is

obtained by maximizing the partition function,

Z(±) ≡
∑
{Ni}

W (±)({Ni})exp

β∑
j

(ϵj −µj)Nj

 , (5)

with respect to the distribution {Ni}, taking into account that the G
(±)
j ’s vary with

{Ni} according to (1)–in Eq. (5) β = 1/(kBT ) is the inverse temperature.
The maximization of Z(±) with the conditions (1) gives

β(µi− ϵi)+ ln
1∓n

(±)
i

ni
=∓

∑
j

αji ln[1∓n
(±)
j ]. (6a)

where the all the upper signs are for fermions and all the lower signs are for bosons.
If one uses the ansatz (3) which is relevant for the systems analyzed below, Eq.

(6a) becomes [27]

β(µi− ϵi)+ ln
[1∓n

(±)
i ]1−α

(s)
i

n
(±)
i

=∓
∑
j

Gjaji ln[1∓n
(±)
j ]. (6b)
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In FES, a system of fermions with a set of parameters, {αij}, may be inter-
preted as a system of bosons with the parameters {αij + δij} and vice-versa, a sys-
tem of bosons of parameters {αij} may be interpreted as a system of fermions with
parameters {αij − δij}. Therefore it is more natural to refer to Bose and Fermi for-
mulations, rather than to bosons and fermions.

The most used formulation of FES is the one employed by Wu in Ref. [4],
which will be denoted here by “W”. To see how this is related to the Bose formulation
we define the number of states in the absence of particles in the system, GW

i ≡
G

(−)
i +

∑
αijNj , and a new particle population, nW

i ≡Ni/G
W
i . Then the nW

i ’s are
determined in two steps. First one solves the system

(1+wi)
∏
j

(
wj

1+wj

)αji

= e(ϵi−µ)/kBT , (7a)

to determine the wi’s, and then the nW
i ’s are calculated from∑

j

(δijwj +αijG
W
j /GW

i )nj = 1. (7b)

Comparing Eqs. (6a) and (7a) we observe that wi ≡ 1/n
(−)
i .

Equations (6) admit solutions of the Fermi liquid form [58]

n
(±)
i =

1

eβ(ϵ̃i−µ)±1
, (8)

where ϵ̃i are Landau type of quasiparticle energies that satisfy the general relations

ϵ̃k = ϵk∓kBT
∑
i

α
(±)
ik ln

[
1∓n

(±)
i

]
.

= ϵk±kBT
∑
i

α
(±)
ik ln

[
1±e−β(ϵ̃i−µ)

]
. (9)

2. MODEL AND FORMALISM

The particles are localized on random sites in a solid s-dimensional matrix.
The positions of the sites are denoted by rI , I = 1,2, . . . ,N0, where N0 is the total
number of sites. We assume that the wavefunctions of the particles do not overlap
and the total energy of the system is

E =
∑
I

ϵrInrI +
1

2

∑
I,J

VrIrJnrInrJ , (10)

where ϵrI is the energy and nrI is the occupation number of the site I; the total
particle number is N =

∑
I nrI .
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We shall work in the continuous limit, so we define the density of sites, σ(r, ϵ)≡∑
I δ

s(r−rI)δ(ϵ−ϵrI ), and the particle density, ρ(r, ϵ)≡
∑

I δ
s(r−rI)δ(ϵ−ϵrI )nrI .

The average particle population in an arbitrary (s+1)D volume, δΩ×δϵ, is n(r, ϵ) =
[
∫
δΩ dsr

∫
δϵ dϵρ(r, ϵ)]/[

∫
δΩ dsr

∫
δϵ dϵσ(r, ϵ)], where we assume that the volume is

large enough, so that we have
∫
δΩ dsr

∫
δϵ dϵσ(r, ϵ) ≥ 1. In these notations the to-

tal energy of the system (10) becomes

E =

∫
Ω
dsr

∫ ϵmax

ϵmin

ϵρ(r, ϵ)dϵ

+
1

2

∫
Ω
dsr

∫
Ω
dsr′

∫ ϵmax

ϵmin

dϵ

∫ ϵmax

ϵmin

dϵ′ρ(r, ϵ)ρ(r′, ϵ′)Vrr′ (11)

where Ω is total the volume of the system and [ϵmin, ϵmax] is the interval in which
ϵ takes values, with ϵmin ≥ 0. We shall assume that ϵmin = 0, ϵmax ≫ kBT (where
kB is the Boltzmann constant and T is the temperature) and the interaction energy
depends only on the distance between the sites, i.e. VrIrJ ≡ V (|rI − rJ |). Because
ϵmax ≫ kBT , we shall take ϵmax = ∞. For concreteness, we analyze only Fermi
system, but the formalism can be easily extended to bosons.

To apply FES, we have to divide the system into species. We do this by coarse-
graining the parameters space of the system, Ω× ϵ, into the elementary volumes,
δΩξ × δϵi. By the lower case Greek letters, e.g. ξ = 0,1, . . ., we identify the spatial
volume and by the lower case Latin letters, e.g. i = 0,1, . . ., we identify the energy
intervals, δϵi ≡ [ϵi, ϵi+1]. We take ϵ0 = 0.

We identify a species either directly, by δΩξ × δϵi, or by the subscripts, (ξ, i).
We assume that each elementary volume, δΩξ, is centered at rξ and contains a large
enough number of sites and particles to justify the application of the statistical meth-
ods and, in particular the Stirling approximation for the logarithms of factorial num-
bers. In each of the volumes, say δΩξ, we have a distribution of sites, rI ∈ δΩξ,
of energies ϵrI . Under the assumption that the number of sites is large enough, the
set of energies {ϵrI}rI∈δVξ

form a (quasi)continuous distribution along the ϵ axis,
with a density σξ(ϵ) ≡

∫
δΩξ

σ(r, ϵ)dsr. The number of states in the species (ξ, i)

is then Gξi = σξ(ϵi)δϵi and the number of particles is Nξi = σξ(ϵi)δϵin(rξ, ϵi) ≡
δΩξδϵiρ(rξ, ϵi). We shall use the notations ρξ(ϵ) ≡ ρ(rξ, ϵ) for the particle density
and ρξ ≡

∫
dϵρ(rξ, ϵ) for the volume particle density.

We define the quasiparticle energies, ϵ̃rI , in a similar way as in Ref. [25,26,31],
by

ϵ̃rI = ϵrI +
∑

ϵ̃rJ<ϵ̃rI

V (|rI −rJ |)nrJ . (12)

Because of the identity E =
∑

I ϵ̃rInrI , the thermodynamics of the quasiparticle gas
follows identically the thermodynamics of the original system. In the continuous
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limit, Eq. (12) becomes

ϵ̃rI = ϵrI +

∫
Ω
dsr

∫ ϵrI

0
dϵV (|rI −r|)σ(r, ϵ)n(r, ϵ). (13)

We have a new parameters space, Ω× ϵ̃, in which, by construction, ϵ̃min =
ϵmin = 0 and ϵ̃max = ϵmax =∞. Using Eq. (13) we obtain the new DOS,

σ̃[r, ϵ̃(ϵ)] = σ(r, ϵ)

∣∣∣∣dϵ̃dϵ
∣∣∣∣−1

=
σ(r, ϵ)∣∣1+∫

Ω dsr′V (|r−r′|)σ(r′, ϵ)n(r′, ϵ)
∣∣ . (14)

Assuming that Eq. (13) defines a one-to-one function ϵ̃(ϵ) – which may also
be inverted to ϵ(ϵ̃) – we split the space Ω× ϵ̃ into species, δΩξ × δϵ̃i, as we did with
Ω× ϵ, in such a way that ϵ̃i ≡ ϵ̃(ϵi) for any i and each species contains Gξi states and
Nξi particles, as before. By the application of the procedure of Refs. [25, 26] to this
interaction potential and particle species we obtain the FES parameters [31, 53]

αξi;ηj =

[
δijσξ(ϵi)+θ(i− j)δϵi

dσξ(ϵi)

dϵi

]
V (|rξ−rη|)

≡
[
δijδΩξσ(rξ, ϵi)+θ(i− j)δϵiδΩξ

∂σ(rξ, ϵi)

∂ϵi

]
V (|rξ−rη|) (15)

where the first doublet, (ξi), specifies the species in which the number of states
changes, whereas the second doublet, (ηj), specifies the species in which the number
of particle changes; θ(k) is the step function, θ(k > 0) = 1 and θ(k ≤ 0) = 0. The
manifestation of the FES parameters given by Eq. (15) for a system with σ(r, ϵ) ≡
σ(r), i.e. independent of ϵ, between species of the same quasiparticle energies is
represented in Fig. 1.

We observe that the FES parameters (15) obey the rules (2) [52] and define a
new ansatz, which is a generalization of (3) [27].

The fact that the definition species, quasiparticle energies and FES parameters
is self-consistent and feasible was checked in Ref. [27] where it was shown that the
FES formalism is equivalent to the standard FLT for a general class of mean-field
systems which includes also a non-constant external potential.

2.1. EQUILIBRIUM THERMODYNAMICS

Since we have fermions in the systems, we employ the Fermi formulation [27]
to calculate the equilibrium thermodynamics. Plugging the α parameters (15) into
the equations (6) we get

0 = β(µ− ϵ̃i)+ ln
1−n(+)(rξ, ϵ̃i)

n(+)(rξ, ϵ̃i)
+
∑
ηj

αηj;ξi ln[1−n(+)(rη, ϵ̃j)]. (16)
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In the continuous limit, Eq. (16) becomes

0 = β(µ− ϵ̃)+ ln
1−n(+)(r, ϵ̃)

n(+)(r, ϵ̃)
+

∫
Ω
dsr′V (|r′−r|)σ[r′, ϵ(ϵ̃)] ln[1−n(+)(r′, ϵ̃)]

+

∫
Ω
dsr′V (|r′−r|)

∫ ∞

ϵ̃
dϵ̃′

∂σ(r′, ϵ)

∂ϵ

∣∣∣∣
ϵ(ϵ̃′)

ln[1−n(+)(r′, ϵ̃′)]. (17)

In the bosonic formulation, as we mentioned above, α(−)
ξi;ηj ≡ δξηδij +αξi;ηj ,

and the dimension of the species is the number of available states, G(−)
ξi ≡ Gξi −

Nξi+1 (we used the notation G
(−)
ξi to avoid confusion with the number of states in

the species, Gξi). This changes also the definition of the population to n(−)(rξ, ϵi)≡
Nξi/G

(−)
ξi ≡ n(+)(rξ, ϵ̃i)/[1−n(+)(rξ, ϵ̃i)]. Plugging the new quantities into Eqs. (6)

we obtain the system of equations for n(−)(rξ, ϵi):

0 = β(µ− ϵ̃i)+ ln
1+n(−)(rξ, ϵ̃i)

n(−)(rξ, ϵ̃i)
−
∑
ηj

α
(−)
ηj;ξi ln[1+n(−)(rη, ϵ̃j)] (18)

and in the continuous limit,

0 = β(µ− ϵ̃)+ ln
1+n(−)(r, ϵ̃)

n(−)(r, ϵ̃)
−
∫
Ω
dsr′V (|r′−r|)σ[r′, ϵ(ϵ̃)] ln[1+n(−)(r′, ϵ̃)]

−
∫
Ω
dsr′V (|r′−r|)

∫ ∞

ϵ̃
dϵ̃′

∂σ(r′, ϵ)

∂ϵ

∣∣∣∣
ϵ(ϵ̃′)

ln[1+n(−)(r′, ϵ̃′)]. (19)

In Wu’s formulation [4] the dimension of the species is GW
ξi =Gξi+

∑
ηj αξi;ηjNηj

≡G
(−)
ξi +

∑
ηj α

(−)
ξi;ηjNηj and nW (rξ, ϵi)≡Nξi/G

W
ξi . The equilibrium population is

calculated from

(1+wξi)
∏
η,j

(
wηj

1+wηj

)α
(−)
ηj;ξi

= e(ϵξ,i−µ)/kT , (20a)

and ∑
η,j

(δξηδijwηj +βξi,ηj)n
W
ηj = 1, (20b)

where βξi,ηj = α
(−)
ξi,ηjG

W
ηj /G

W
ξi ≡ δξηδij +αξi;ηjG

W
ηj /G

W
ξi and wξi ≡

(
n
(−)
ξi

)−1
.

Having the quasiparticle populations, we can calculate any thermodynamical
quantity. The internal energy of the system is

U(T,µ) =
∑
I

nrI ϵ̃rI =
∑
ξi

nP (rξ, ϵ̃i)G
P
ξiϵ̃i (21)
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or, in the continuous limit,

U(T,µ) =

∫
Ω
dsr

∫ ∞

0
dϵ̃ σ̃P (r, ϵ̃)nP (r, ϵ̃)ϵ̃≡

∫
Ω
dsr

∫ ∞

0
dϵ̃ ρ̃(r, ϵ̃)ϵ̃, (22)

where P = (+), (−) or W and σ̃(+)(r, ϵ̃) is given by Eq. (14). The other two
densities of states are σ̃(−)(r, ϵ̃) ≡ σ̃(+)(r, ϵ̃)− ρ̃(r, ϵ̃) and σ̃W(r, ϵ̃) and we have
the relation ρ̃(r, ϵ̃)≡ σ̃(+)(r, ϵ̃)n(+)(r, ϵ̃)≡ σ̃(−)(r, ϵ̃)n(−)(r, ϵ̃)≡ σ̃W (r, ϵ̃)nW (r, ϵ̃).
We shall use the notation ρ̃ξ(ϵ̃) ≡ ρ̃(rξ, ϵ̃) for the quasi-particle density in Ωξ, at
quasiparticle energy ϵ̃, and ρ̃ξ ≡

∫
dϵ̃ρ̃(r, ϵ̃) for the volume quasi-particle density.

One should note that ρ̃ξ ≡ ρξ by definition.
In order to define the DOS σ̃W (r, ϵ̃) we have to define the densities of the FES

parameters [24, 27], arϵ̃;r′ϵ̃′ , by

αξi;ηj = arξ ϵ̃i;rη ϵ̃jδϵiδΩξ (23a)

where

arξ ϵ̃i;rη ϵ̃j =

[
δ(ϵ̃i− ϵ̃j)σ(rξ, ϵi)+θ(ϵ̃i− ϵ̃j)

∂σ(rξ, ϵi)

∂ϵi

]
V (|rξ−rη|). (23b)

Using Eqs. (23) we write σ̃W (r, ϵ̃) = σ̃(+)(r, ϵ̃)+
∫
Ω dsr′

∫∞
0 dϵ̃′arϵ̃;r′ϵ̃′ ρ̃(r

′, ϵ̃′).
Similarly to Eq. (22), the total particle number is

N(T,µ) =

∫
Ω
dsr

∫ ∞

0
dϵ̃ σ̃P (r, ϵ̃)nP (r, ϵ̃)≡

∫
Ω
dsr

∫ ∞

0
dϵ̃ ρ̃(r, ϵ̃). (24)

The heat capacity and the entropy of the system are

CV =

(
∂U

∂T

)
N

=
∂U(T,µ)

∂T
− ∂U(T,µ)

∂µ

∂N(T,µ)

∂T

(
∂N(T,µ)

∂µ

)−1

(25)

and

S = kB ln(W (±)), (26)

respectively, and they satisfy the equation

CV = T

(
∂S

∂T

)
N

. (27)

2.2. HOMOGENEOUS SYSTEM

If σ(r, ϵ)≡ σ(ϵ) is independent of r and if we impose periodic boundary con-
ditions or ignore the effect of the surfaces (deep inside the solid), then both, n(r, ϵ)
and σ̃(r, ϵ̃), are independent of r and in the Eqs. (17) and (19) we can perform the
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i

r

ε

ξ(a)

~

i

r

ε

ξ(b)

~

Fig. 1 – Partitioning of real space and quasiparticle energy axis. Upon inserting an extra particle in
species (ξ, i), the numbers of available states in all species (η, i) are changed.

integrals over Ω to obtain an equation only in ϵ̃:

0 = β(µ− ϵ̃)+ ln
1−n(+)(ϵ̃)

n(+)(ϵ̃)
+ IV

{
σ[ϵ(ϵ̃)] ln[1−n(+)(ϵ̃)]

+

∫ ∞

ϵ̃
dϵ̃′

∂σ(ϵ)

∂ϵ

∣∣∣∣
ϵ(ϵ̃′)

ln[1−n(+)(ϵ̃′)]

}
, (28)

for fermions or

0 = β(µ− ϵ̃)+ ln
1+n(−)(ϵ̃)

n(−)(ϵ̃)
− IV

{
σ[ϵ(ϵ̃)] ln[1+n(−)(ϵ̃)]

−
∫ ∞

ϵ̃
dϵ̃′

∂σ(ϵ)

∂ϵ

∣∣∣∣
ϵ(ϵ̃′)

ln[1+n(−)(ϵ̃′)]

}
, (29)

for bosons, where

IV =

∫
Ω
dsr′V (|r′−r|). (30)

Moreover, if σ(r, ϵ)≡ σ, i.e. it does not depend on energy, then one may define
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an effective FES parameter, αeff(ϵ̃) = σIV , and Eqs. (28) and (29) simplify to

β(ϵ̃−µ) = ln
[1−n(+)(r, ϵ̃)]1+αeff

n(+)(r, ϵ̃)
(31)

and

β(ϵ̃−µ) = ln
[1+n(−)(r, ϵ̃)]1−αeff

n(−)(r, ϵ̃)
, (32)

respectively.

3. APPLICATIONS

3.1. TWO SUB-VOLUMES SYSTEM

First let’s consider the simple example of a system formed of two sub-volumes,
δΩ0 and δΩ1. Such a test-case has the advantage of being transparent enough for a
detailed discussion while still providing significant insights into the thermodynamic
of more general interacting inhomogeneous systems. Moreover, for properly chosen
parameters the populations may be calculated analytically.

We define the energy independent densities of states for the non-interacting
particles in the two sub-volumes, σ0 and σ1, and if we take the interaction energies
between the particles in the same volume to be V00 = V11 and in different volumes
V01 = V10, then the FES parameters are αξi,ηj = σξVξηδij , where ξ,η = 0,1 and
i, j denote the energy intervals, as explained above. The total number of particles
is defined as N = 2EFσ ≡ EF(σ0 + σ1), where σ is the average DOS and EF is
the Fermi energy for the non-interacting particle system. In this example we take
2σ0 = σ1 = 1.

We investigate two types of systems: type 1 (figure 2 a), with 0< V10 = V01 <
V00 = V11 (since the particles in the same volume, being closer together, interact
stronger than the particles in different volumes), and type 2 (figure 2 b), with the
particles in the same volume behaving like ideal fermions, but interact repulsively
with the particles in the other volume: 0 = V11 = V00 < V01 = V10.

In figure 2 (a) we observe that the particle densities in both volumes decrease
with the quasiparticle energy, as one would expect, whereas, due to the repulsive in-
teraction between the atoms, the fermionic densities of states increase monotonically.
At high energies the fermionic densities of states converge to the non-interacting den-
sities, σ0 and σ1. These curves are calculated for kBT = 0.4EF, but they are typical
for this system. In the right inset of figure 2 (a) we plot the heat capacity, which is
not much different from the heat capacity of an ideal Fermi system.

The second example (figure 2 b) is equivalent to two subsystems of ideal
fermions, with mutual interaction and which can exchange particles between them.
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Fig. 2 – (Color online) Main plots: particle density vs. quasiparticle energy for the system consisting
of two subsystems of volumes δΩ0 and δΩ1, which can exchange particles between them. The black
curves correspond to sub-system 0 (ξ = 0) and the dashed, red curves correspond to the sub-system 1
(ξ = 1). Panels (a) and (b) contain the results for the type 1 (V00 = V11 = 0.2> V01 = V10 = 0.1)

and type 2 (V00 = V11 = 0< V01 = 1.0) systems, respectively. In both panels, the left insets contain
the fermionic DOS as functions of quasiparticle energy, for ξ = 0 (black/solid) and ξ = 1

(red/dashed), whereas the right insets contain the temperature dependence of the heat capacity of the
system (red/solid) and of a non-interacting system of fermions of the same, constant DOS

(black/dashed). The main plots and the left panels correspond to a temperature kBT = 0.4EF, where
EF is the Fermi energy. The chemical potentials are marked by vertical dotted lines.

This choice of parameters lead to α00 = α11 = 0 and 2α01 = α10. Choosing α10 = 1
and denoting the fugacity by g(ϵ̃) = exp[β(ϵ̃−µ)], we obtain from the system (16) a
third order equation for n(+)

1 (ϵ̃)≡ n
(+)
1 (g),

g
[
n
(+)
1 (g)

]3
+(1−g−g2)

[
n
(+)
1 (g)

]2
−2n

(+)
1 (g)+1 = 0, (33a)

and an equation for n(+)
0 (ϵ),

n
(+)
0 (g) = 1−

g2
[
n
(+)
1 (g)

]2
[
1−n

(+)
1 (g)

]2 . (33b)

The third degree equation from (33a) has three real, distinct solutions for g > 0. How-
ever, by imposing the conditions n

(+)
ξ (ϵ̃) ≥ 0 and limϵ̃→∞n

(+)
ξ (ϵ̃) = 0, we remain

with only one solution, which is represented in Fig. 2(b).
In contrast to the previous system, a maximum occurs in ρ̃0(ϵ̃) at ϵ̃ = µ, indi-

cating a population inversion with respect to the quasiparticle energy in the volume
with lower DOS. This is due to the mutual exclusion statistics (1), which reduces the
density of states significantly at low energies, especially in the species 0, where the
density of states is lower.

At larger quasiparticle energies, ϵ̃ > µ, the densities of particles are lower and
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therefore the statistical interaction effects are also diminished. It is worth mentioning
that for the total particle density, ρ̃(ϵ̃) = ρ̃0(ϵ̃)+ ρ̃1(ϵ̃), no population inversion oc-
curs, i.e. ρ̃(ϵ̃) is a monotonically decreasing function of the quasiparticle energy. The
maximum observed in ρ̃0(ϵ̃) induces a minimum in σ̃

(+)
1 (ϵ̃), whereas σ̃(+)

0 increases
monotonically with ϵ̃.

Systems of particles with the same constant DOS and direct FES parameters,
αij = αδij , have the same heat capacity, which is independent of α and which is
monotonically increasing with T [18, 43–46]. In our case the existence of mutual
FES parameters, αij ̸= 0 for i ̸= j, not only changes the heat capacity, but also leads
to the appearance of a maximum in Cv(T ). For T → ∞, Cv(T ) converges to 1,
which is the Boltzmann limit, for any FES parameters.

3.2. SCREENED COULOMB INTERACTIONS. HOMOGENEOUS SYSTEMS.

We further assume a two-particle screened potential of the general form

V (r;γ,λ) = κ
exp(−r/λ)

rγ
, (34)

where r = |r− r′|. In particular, if γ = 1, we have the usual screened Coulomb and
Yukawa type potentials. In the absence of screening (λ→∞), such systems exhibit
standard thermostatistical behavior if d/γ < 1 [59] and the interactions are classified
as short ranged. If d/γ ≥ 1 the systems obey non-extensive thermodynamics, i.e.
quantities like total energy are not extensive due to the long range interactions. How-
ever if the screening is present, the interactions become short-ranged and the usual
thermodynamics applies.

To remove the singularity at the origin that appear in the integrals over V (r)
in Eqs. (17), (19) and (30), we introduce a cut-off at radius R0, below which the
potential remains constant – V (r) = V (R0)≡ V0 for r < R0. With this assumption,
for a homogeneous system,

IV =
2π

s
2

Γ
(
s
2

) ∫ ∞

0
dr rs−1V (r) = IV 1+ IV 2, (35)

where

IV 1 ≡ 2π
s
2

Γ
(
s
2

) ∫ R0

0
dr rs−1V (r) =

π
s
2

Γ
(
s
2 +1

)Rs
0V0,

IV 2 ≡ IV − IV 1 =
2π

s
2

Γ
(
s
2

)κσλs−γΓ

(
s−γ,

R0

λ

)
. (36)

Here Γ(s,x) =
∫∞
x ts−1e−tdt is the upper incomplete gamma function.

For a screened Coulomb-type interaction in a s-dimensional system (s=1,2,3),
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the term IV 2 can be expressed as:

I1DV 2 = 2κσE1(R0/λ),

I2DV 2 = 2πκσ λexp

(
−R0

λ

)
,

I3DV 2 = 4πκσ λ(R0+λ)exp

(
−R0

λ

)
, (37)

where E1(z) is the exponential integral,

E1(z) =

∫ ∞

z

e−t

t
dt=

∫ ∞

1

e−zt

t
dt. (38)

Using the integrals (37) calculated analitically one can apply the formalism presented
in Subsection 2.2 and therefore the complete thermodynamical behavior of the ho-
mogeneous system may be calculated.

3.3. ACCUMULATION AND DEPLETION EFFECTS IN ONE-DIMENSIONAL SYSTEMS

Using the FES formalism we next describe the accumulation and depletion ef-
fects for one dimensional systems of particles with screened Coulomb interactions
and non-uniform DOS. Periodic boundary conditions are imposed using the min-
imum image convention, i.e. the interaction drops at a distance equal to half the
length of the repetitive unit [60].

For simplicity we shall assume in the following that σ(r, ϵ) [and σξ(ϵ)] are
independent of ϵ, so we shall simplify the notation of the DOS to σ(r) (and σξ). In
this case the FES parameters (15) can be written as

αξi;ηj = δijδΩξσ(rξ, ϵi)V (|rξ−rη|)≡ δijδΩξσξ(ϵi)Vξη, (39)

which are diagonal in the indices i and j.
For our 1D system we apply a spatial partitioning such that δΩξ ≡Rξ = 1 and

we take the cut-off distance, R0, to be half of the species dimension, i.e. R0 =Rξ/2.
Furthermore, we set V (Rξ) = 1, which implies V (R0) = 2. Under these assumptions
we rewrite the FES parameters in Eq. (39) as:

αξi;ξi = σξ(ϵi)V0Rξ,

αξi;ηj = δijσξ(ϵi)(V0/2)R
2
ξ/|rξ−rη| for i ̸= j.

The quasiparticle densities ρ̃ξ(ϵ̃), ρ̃ξ can be found in any of the descriptions
aforementioned (fermionic, bosonic and W ) by solving the corresponding nonlinear
system (17), (19) or (20). The solution is found iteratively using gradient descent
method – as implemented by GSL [61] – starting from an initial guess solution. A
key point is related to the solver initialization. A feasable solution may be represented
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Fig. 3 – (Color online) Quasiparticle density, ρ̃ξ(ϵ̃), for systems with a dip (σζ = 0.5) (a) and a peak
(σζ = 2.0) (b) in the otherwise constant DOS (σξ = 1.0, for ξ ̸= ζ). The symbols represent the

particle densities which correspond to the species ζ [squares (a) and circles (b)] and its first nearest
neighbors (up/down triangles). The solid black lines correspond to a uniform systems with σ = 1.0.
The insets contain similar data for systems with a finite width dip/peak. The dashed lines represent

particle densities for sub-volumes [ζ−τ,ζ+ τ ], with τ ≤ 4. The volume density of (quasi)particles ρ̃ξ
in each species are represented in (c). Pairs of vertical dotted lines mark the extension of the

considered dips and peaks.

by the equilibrium population of the non-interacting system. However, a more rapid
convergence is obtained once the solver is initialized using the solution obtained
using Eqs. (35-38) for a homogeneous system with the average DOS and the same
interaction, where simpler calculations can be performed, as indicated in Section
3.2. Since the thermodynamical quantities of interest should be obtained for a given
particle number N rather than for a given µ, an extra loop is introduced so that
the corresponding chemical potential is found in agreement with the normalization
relation (24).

We consider a system with repulsive screened Coulomb interactions, parame-
terized by γ = 1 and λ= 3Rξ. For the partition of the physical space and the coarse
graining on the energy axis we take NR = 20 and NE = 50, respectively. The system
contains a number of N =NREFσ particles, where σ is the average DOS.
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Fig. 4 – (Color online) (a) Quasiparticle density for a system with a step-like DOS, σξ = 1, for
ξ < NR/2 (upper curves, in red) and σξ = 0.5, for ξ ≥NR/2 (lower curves, in blue). The symbols

(up/down triangles) correspond to the four sub-volumes located at the interfaces. In the insets (left, for
ξ < NR/2, and right, for ξ ≥NR/2) are shown details of ρ̃ξ(ϵ̃) for the remaining sub-volumes. The
numbers indicate the minimum distance from either interface. (b) Spatial (quasi)particle density ρ̃ξ of

the considered system.

Two particularly transparent examples of an inhomogeneous system are ob-
tained by introducing a dip or a peak in the density of states of a homogeneous sys-
tem. More concretely, we choose one sub-volume, ζ, for which the density of states
is half or twice the reference (constant) value of the other sub-volumes – σξ = 1.0
for any ξ ̸= ζ and σζ = 0.5 (“dip” case) or 2.0 (“peak” case). For symmetry reasons
we have considered NR+1 sub-volumes. Figure 3 depicts the particle densities for
the two types of systems considered at T = EF/kB. Unlike a homogeneous system,
where there is a unique function nξi ≡ ni for all sub-volumes, corresponding to a
(single) mean field FES parameter αeff , we now have different populations with a
spatial distribution. As one can see from Fig. 3 the systems obey a mirrored symme-
try: the density of particles in sub-volume ζ drops in the “dip” case and is enhanced
in “peak” case, as compared with a homogeneous system, σξ = 1.0 for any ξ. The
particle densities in nearest neighbors sub-volumes of ζ, i.e. ζ−1 and ζ+1, exhibit
deviations from the mean field values and opposite to the values in sub-volume ζ.
This can be explained as follows.
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At equilibrium, in the case of a dip in the density of states, the repulsive inter-
action between particles drives accumulations of particles towards the edges of the
region with constant σ = 1.0, as the number of particle in sub-volume ζ is lower due
to a smaller number of available states. The opposite, namely a depletion of parti-
cles, is found in the case of a peak in the DOS, where the larger number of particles
in sub-volume ζ repel the particles in the adjacent regions. Starting with the ζ−2 and
ζ+2 sub-volumes (two sub-volumes away), the populations already get very close
to the values corresponding to the homogeneous system.

However, for dips or peaks of finite widths, a broader distribution of particle
densities can be observed in the insets of Fig. 3. Here we took the linear dependences
σζ+τ = σζ−τ = 0.5+ 0.1τ (dip) and σζ+τ = σζ−τ = 2.0− 0.2τ (peak), with τ =
1,2,3,4. Note that due to the symmetry, except the ζ sub-volume, we have the pairs
ρζ−τ,i = ρζ+τ,i, for any τ > 0.

We further analyze the particle distribution in a periodic one-dimensional sys-
tem with interfaces between high (σξ = 1.0, for ξ < NR/2) and low (σξ = 0.5, for
ξ ≥ NR/2) DOS regions. The obtained results are represented in Fig. 4 for a tem-
perature T = EF/kB. From the main plot one can see the particle densities are di-
vided in two groups corresponding to the two values of σ. Like in the previous case,
significant deviations occur at the interfaces. The two sub-volumes adjacent to the
interfaces indicate accumulations and depletions of particles, determined by the high
and low DOS values, respectively. The particle densities in the other sub-volumes
are depicted in detail in the two insets, indicating a convergence towards the values
corresponding to the mid-points of the two homogeneous regions. The exact extent
of the deviations in particle distributions compared to the homogeneous system de-
pends also on the type of interacting potential and it can be accurately described by
the FES formalism.

3.4. QUASIPARTICLE SEGREGATION AND THERMODYNAMICAL CONSEQUENCES IN 1D
DISORDERED SYSTEMS.

We analyze in the following the properties of a system with disorder, which
we introduce by randomly distributed values for the local DOS σξ at each site. We
consider a step distribution centered around the average value σ0 = 2 and several de-
grees of disorder determined by the width of the distribution, ∆σ. Figure 5(a) shows
a typical particle distribution obtained at a temperature T = EF/kB and maximum
disorder, ∆σ = 4.

Like in the two previously analyzed examples one can observe the particle
densities are larger at sites with larger DOS, although now we find the disorder spe-
cific distributions ρξi. In the lower plot is represented the local DOS together with
the particle distributions at each site ξ, for two temperatures Tl = 0.5EF/kB and
Th = 6EF/kB. One can see that for the higher temperature Th the particle distri-
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Fig. 5 – (Color online) (a) Quasiparticle density for a disordered system (σ0 = 2, ∆σ = 4). The
species with high (blue/solid) and low (red/dashed) DOS are indicated. (b) Density of states σξ

(black/solid with dots) and particle numbers in each sub-volume for a high (Th = 6.0) (red/dashed)
and a low (Tl = 0.5) (blue/solid) temperature.

bution follows closely the σξ distribution, while for the the lower temperature Tl

the particles are more evenly distributed. This is because in the high temperature
limit the interactions become less and less important, the particle distributions ap-
proach the Maxwell-Boltzmann distribution and all available states become equally
probable. Consequently, the spatial particle density ρξ in each sub-volume becomes
proportional to the density of states σξ. By contrast, in the lower temperature limit,
the repulsive interactions tend to level the particle distribution. At low and interme-
diate temperatures, there is no clear relation between the particle distribution and the
local DOS.

The results presented so far for the particle density distributions may be ob-
tained in any of the three descriptions mentioned in the section 2, i.e. the fermionic,
bosonic and Wu pictures, which all lead to the same physical results. To further il-
lustrate this fact, we plotted in Fig. 6 the populations and the quasi-particle DOS in
the fermionic and bosonic pictures, for the same disordered system analyzed before
(σ0 = 2, ∆σ = 4, T = EF/kB). As expected all the populations in fermionic de-
scription, n(+)

ξi , are smaller than unity, while some of the bosonic populations, n(−)
ξi ,

indicate a large increase at low energies. This difference regarding the populations
in the two pictures is compensated by the behavior of the quasi-particle DOS, σ̃(+)

and σ̃(−), so that the particle densities ρξi and ρξ are the same in any description.
Specifically, we have for low energies σ̃(−) < σ̃(+), while at high energies both σ̃(−)

and σ̃(+) asymptotically approach the Wu density of states, σ̃W .
An important aspect, which has consequences in the thermodynamical behavior
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Fig. 6 – (Color online) Populations and quasi-particle DOS (red/dashed for σξ > 2, blue/dashed for
σξ ≤ 2) in the fermionic (a-b) and bosonic (c-d) descriptions.

of the systems, is related to the reduction of available states especially in the sub-
volumes with low DOS. As it was pointed out in Section 3.1, this depletion occurs
in the species which correspond to the lower quasi-energy spectrum and can lead
to a complete spatial segregation of quasiparticles at a certain energy. In our case,
the bottom energy species in sub-volumes 10 and 18, followed by 6 and 19 have the
lowest occupation, as an effect of statistical (repulsive) interactions exerted by the
neighboring species. The depletion of energy levels has consequences not only in the
thermodynamic behavior, e.g. heat capacity, but also in the transport properties, e.g.
in systems with nearest neighbor hopping mechanism.

The heat capacity of such disordered systems exhibits peculiar effects. As it
was indicated in Section 3.1, in a uniform system, i.e. with a constant DOS, the heat
capacity is the same for any diagonal single FES parameter α. However, here we have
FES parameters of the form (15), which are diagonal in energy (since dσξ(ϵ)/dϵ= 0
for any ξ) and non-diagonal with respect to position indices. The results are pre-
sented in Fig. 7(a) for different distributions of the local DOS, as indicated in the
inset, corresponding to the values ∆σ = 1,0.75,0.5σ0. By increasing the disorder
a deviation from the reference constant-DOS dependence of the heat capacity per
particle is observed, with a maximum above 1. Similar deviations are observed in
the temperature dendence of the entropy in Fig. 7(b), which are in agreement with
relation (27). These deviations vanish in the low disorder or high temperature lim-
its. Ensemble averages on disorder were also performed and a qualitatively similar
behavior was found.

The model presented here for interacting particles with disorder assumes an er-
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Fig. 7 – (Color online) Heat capacity (a) and entropy (b) for different degrees of disorder: ∆σ = 0
(black/solid), 0.5 (red/dotted), 0.75 (green/dashed) and 1 (blue/dashed-dotted), as indicated in the

inset.

godic behavior and the equilibrium thermodynamics is extracted for a single phase.
However from the dynamical perspective, systems of this type have typical glassy
behavior, which is generally quasi-ergodic and characterized by a sequence of relax-
ation time scales. The FES parameters given by (15) can also provide the dynamics
of the system following the Monte Carlo approach described in Ref. [47].

4. CONCLUSIONS

We have formulated an approach based on the fractional exclusion statistics
(FES) to calculate the thermodynamic properties of a general class of systems of in-
teracting particles. The systems may have (in principle) any number of dimensions,
may be either homogeneous or non-homogeneous, and we consider only particle-
particle interactions which depend on the distance between the particles. If the
system exists in an s-dimensional space, then the species are defined in the s+1-
dimensional space of positions and quasiparticle energies. This method allows the
calculation of thermodynamic properties of relatively large particle systems, in a
semi-classical fashion, yet incorporating the local properties of interacting quantum
gases by means of statistical parameters.

For the consistency and for making connection with other approaches of FES,
we presented three perspectives of the formalism called here fermionic, bosonic and
Wu’s perspective.

To show the feasibility of our procedure, we applied it to test cases of different
complexities, ranging from spatially homogeneous systems, to systems characterized
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by random distributions of local densities of states. We first analyzed test-case sys-
tems with two sub-volumes, where analytical calculations can be performed, and
found a rather different thermodynamical behavior depending on the set of particle-
particle interacting potentials. In the framework of non-diagonal FES parameters, the
chosen repulsive interactions can reduce the number of available states in the species
with lower DOS, causing a quasiparticle population inversion. This has observable
consequences in the temperature dependence of the heat capacity.

The FES formalism employed can describe the spatial accumulation and deple-
tion of particles in systems with non-uniform DOS. We considered here the screened
Coulomb interaction, as it is of broad interest especially in the physics of semicon-
ductor devices, where charging effects at different interfaces are particularly impor-
tant. However, the formalism is not limited to this type of potentials and the FES
parameters can be extracted for rather general many-body interactions.

Prototypical glassy systems were investigated, where the real space disorder of
sites was modeled by a random DOS. Qualitative features found in the first test-cases
analyzed, with two sub-volumes, are also present in the considered disordered sys-
tems. In particular, the repulsive interactions and the cooperative effect inherently set
up by the finite range interactions leads to the depletion of states in the species with
low quasiparticle energies, especially in sub-volumes with low DOS. This causes a
spatial segregation of quasiparticles at low energies, which implies consequences in
the transport properties as well. The obtained deviations in the temperature depen-
dence of the heat capacity are proved to be proportional to the degree of disorder.

To conclude, the proposed model and method based on FES explores the ther-
modynamic behavior of non-homogeneous interacting-particle systems. The feasi-
bility of our method is proved by numerical calculations of thermodynamic proper-
ties of a variety of systems of different complexities. Elsewhere [31] we compared
the mathematical formalism of this approach with Landau’s Fermi liquid theory and
found that they are equivalent proving in this way the correctness of our formulation.
The quasiparticle analysis points out different thermodynamical features, which are
correlated with the considered interacting potentials. By including the spatial di-
mension, the presented FES formalism becomes also suitable for the investigation of
transport properties of mesoscopic systems.

Another FES method, complementary to ours, has been recently proposed [57].
Our method applies to non-homogeneous systems with long range interactions in any
number of dimensions or external potential (see also [31]) if the number of parti-
cles and states within the range of the particle-particle interaction potential is large,
whereas the method of Ref. [57] describes one-dimensional systems of equal free-
particle energies (on-site energies), but for any particle-particle interaction range.
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