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Abstract. In this paper a study of proper projective collineation in special non-static 
spherically symmetric space-times is given by using real eigenvalues and eigenbivectors of 
the Riemann tensor, direct integration and algebraic techniques. From the above study 
we have shown that when the above space-time admits proper projective collineation 
they become a very special class of static spherically symmetric space-times. 
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1. INTRODUCTION 

The aim of this paper is to find the existance of proper projective collineation 
in special non-static spherically symmetric space-times. In this paper an approach, 
which is given in [1] is used to study the projective collineation for the above 
space-times. Doubtless, this approach is lengthy but it will definitely tell the 
existance of a proper projective collineation. Throughout M  represents a four 
dimensional, connected, Hausdorff space-time manifold with Lorentz metric g  of 
signature (–, +, +, +). The curvature tensor associated with ,abg  through the Levi-

Civita connection, is denoted in component form by ,bcd
aR  and the Ricci tensor 

components are .acb
c

ab RR =  The usual covariant, partial and Lie derivatives are 
denoted by a semicolon, a comma and the symbol ,L  respectively. Round and 
square brackets denote the usual symmetrization and skew-symmetrization, 
respectively. The space-time M  will be assumed non flat in the sense that the 
curvature tensor does not vanish over any non empty open subset of .M   

Any vector field X  on M  can be decomposed as  

 ;

1 ,
2

= +a b ab abX h F  (1) 
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where abXbaab gLhh == )(  and )( baab FF −=  are symmetric and skew symmetric 
tensors on ,M  respectively. Such a vector field X  is called projective if the local 
diffeomorphisms tψ  (for appropriate t ) associated with X  map geodesics into 
geodesics. This is equivalent to the condition that abh  satisfies [2]  

 ; 2 ,η η η= + +ab c ab c ac b bc ah g g g  (2) 

for some smooth closed 1-form on M  with local components .aη  Thus aη  is 
locally gradient because the connection is metric and will, where appropriate, be 
written as aa ,ηη =  for some function η  on some open subset of .M  If X  is a 

projective collineation and 0; =baη  then X  is called a special projective 

collineation on .M  The statement that abh  is covariantly constant on M  is, from 

(2), equivalent to aη  being zero on M  and is, in turn equivalent to X  being an 

affine vector field on M  (so that the local diffeomorphisms tψ  preserve not only 
geodesics but also their affine parameters). If X  is projective but not affine then it 
is called proper projective collineation [3]. The vector field X  is said to be proper 
special projective collineation, if X  is not affine and .0; =baη  Further if X  is 

affine and Rccgh abab ∈= ,2  then X  is homothetic (otherwise proper affine). If 
X  is homothetic and 0≠c  it is proper homothetic while if 0=c  it is Killing.  

The second order skew symmetric tensor abF  is called a bivector (at p). 

Regarding abF  as a skew matrix, its rank is therefore an even number 0, 2 or 4. If it 

is 0 then .0=abF  Suppose if the rank of abF  is 2 then it is called simple bivector 
otherwise it is called non-simple (for more detalis see [3]). Here, at Mp∈  one 
may choose a orthonormal tetrad ( , , , )θ φt r  satisfying 

1====− a
a

a
a

a
a

a
a rrtt φφθθ  (with all others inner products zero). Since at 

,p  the set of bivectors at p  is a six-dimensional vector space which can spanned 
by the six bivectors given by [3]  

 
.2,2,2

,2,2,2

][
6

][
5

][
4

][
3

][
2

][
1

baabbaabbaab

baabbaabbaab

FrFrF

tFtFrtF

φθφθ

φθ

===

===
  

In general, however, equation (2) is difficult to handle directly and alternative 
techniques are needed. One such technique arises from the following result. Let X  
be a projective collineation on M  so that (1) and (2) hold and let F  be a real 
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curvature eigenbivector at Mp∈  with eigenvalue R∈λ  (so that 
abcd

cd
ab FFR λ=  at p ) then at p  one has [4]  

 ).2(0 ;baababa
c

bcb
c

ac hPFPFP ηλ +==+  (3)  

Equation (3) gives a relation between b
aF  and abP  (a second order 

symmetric tensor) at p  and reflects the close connection between baabh ;, η  and 
the algebraic structure of the curvature at .p  If F  is simple then the blade of F  (a 
two dimensional subspace of MTp ) consists of eigenvectors of P with same 
eigenvalue. Similarly, if F  is non-simple then it has two well defined orthogonal 
timelike and spacelike blades at p  each of which consists of eigenvectors of P  
with same eigenvalue but with possibly different eigenvalues for the two blades [3].  

2. MAIN RESULTS 

Consider a non static spherically symmetric space-time in the usual 
coordinate system ),,,( φθrt  (labeled by ),,,,( 3210 xxxx  respectively) with line 
element [5]  

 ( ) ( ), ,2 2 2 2 2 2 2d e d e d (d sin d ).A t r B t rs t r r θ θ φ= − + + +  (4) 

The above space-time (4) admits three linearly independent Killing vector 
fields which are  

 .,coscotsin,sincotcos
φφ

φθ
θ

φ
ϕ

φθ
θ

φ
∂
∂

∂
∂

+
∂
∂

∂
∂

−
∂
∂

 (5) 

The non-zero independent components of the Riemann tensor are  

 
( , ) 2 ( , ) 2

01 ( , ) ( , )
01 1( , )

e ( ( , ) 2 ( , )) e ( ( , ) 2 ( , )1 e ,
4 ( , ) ( , )) e ( , ) ( , )

α− −
+ − + −⎡ ⎤

= − ≡⎢ ⎥−⎣ ⎦

A t r B t r
r rr t ttA t r B t r

A t r
t t r r

A t r A t r B t r B t r
R

A t r B t r A t r B t r
 

 02 03 ( , )
02 03 2

1 e ( , ) ,
2

α−= = − ≡B t r
rR R A t r

r
 12 13 ( , )

12 13 3

1 ( , )e ,
2

α−= = ≡B t r
rR R B t r

r
  

 23 ( , )
23 42

1 (1 e ) ,α−= − ≡B t rR
r

 02 03 ( , )
12 13 5

1 ( , )e ,
2

α−= = − ≡A t r
tR R B t r

r
  

 12 13 ( , )
02 03 6

1 ( , )e ,
2

α−= = − ≡B t r
tR R B t r

r
  (6)  
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where α1, α2, α3, α4, α5 and α6 are real functions of t  and r  only. It also follows that 
α6 = eA–B α5. One can write the above equation (6) as  

 

1 1 2 2 4
1 2 6

3 3 5 4 4 2
2 6 3 5

5 5 3 6 6
3 5 4

, ,
, ,
, .

ab cd ab ab cd ab ab
cd cd

ab cd ab ab ab cd ab ab
cd cd

ab cd ab ab ab cd ab
cd cd

R F F R F F F
R F F F R F F F
R F F F R F F

α α α

α α α α

α α α

= = +

= + = +

= + =
 (7) 

It is important to note that the method we are going to follow is given in [1]. 
Define ababab FFW 241 λ+=  and .352

ababab FFW η+=  We are interested to find 

that whether these bivectors abW1  and abW2  are the real eigenbivectors of the 
Riemann tensor for the real choice of λ  and .η  Equation (7) gives 

 ( ) ( ) ( )
( )

5 21 4 2
3 6

3 6

α λα
α λα

α λα
+

= + +
+

ab cd ab ab
cdR W F F )   

and  

 ( )2 5 35 2
3 6

3 6

α ηα
α λα

α ηα
⎛ ⎞+

= + +⎜ ⎟+⎝ ⎠
ab cd ab ab

cdR W F F ). 

abW1  and abW2  are the eigenbivectors of the Riemann tensor for the choice of 

( )2 3
1 1

62
α α ρ

λ η
α

− +
= =  and 

( )2 3
2 2

6

,
2

α α ρ
λ η

α
− −

= =  where ρ2 = (α3 – α2)2 – 4 α5α6 

and α6 ≠ 0. The case when α6 = 0 will be discuss later. One can easily see that in 
general ,1λ  ,1η  2λ  and 2η  are not real. Hence the eigenbivectors of the Riemann 
tensor are not real in general. Here, we are only interested in real eigenbivectors of 
the Riemann tensor with real eigenvalues. There exist the following possibilities 
ρ2 ≥ 0 or ( )2

3 2 5 64 0α α α α− − ≥ . Substituting the above information back we get  

 ( ) ( ) ( )3 24 2 4 2
1 1 ,

2
ab cd cd ab ab

cdR F F F F
α α ρ

λ λ
+ +

+ = +  

 ( ) ( ) ( )3 25 3 5 3
2 2 .

2
α α ρ

λ λ
+ −

+ = +ab cd cd ab ab
cdR F F F F  

The bivectors 1Wab = (4Fab + λ12Fab) and 2Wab = (5Fab + λ2 3Fab) are simple. 

Now define ( )1 3 2

1
2

γ α α ρ= + +  and ( )2 3 2

1 .
2

γ α α ρ= + −  Here, at Mp∈  one 

can choose the tetrad ),,,( φθrt  satisfying 1====− a
a

a
a

a
a

a
a rrtt φφθθ  (with 
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all other inner products zero). Here the vector fields are chosen as 
0 1 22 2e , e ,

A B

a a a a a at r rδ δ θ δ= = =  and 3sin .a arφ θ δ= It is important to note that we 
are using (t, r, θ, φ) as both coordinates and vector fields. The eigenbivectors abW1  

and abW2  of the curvature tensor at Mp∈  are simple with blades spanned by the 
vector pairs ),( 1 θλ tr +  each with eigenvalue )(1 pγ  and ),( 2 φλ tr +  each with 
eigenvalue ).(2 pγ  We consider the open sub region where 1γ  and 1γ  are nowhere 
equal. The rest will be considered latter. It is important to note that we are 
considering the case when ρ2> 0. The case when ρ = 0 ⇒ γ1 = γ2 which gives 
contradiction to our assumption that 1γ  and 1γ  are nowhere equal. The case when 

21 γγ =  will consider later. At ,p  the second order symmetric tensors is a 10-
dimensional vector space which can spanned by the 10 basis symmetric tensors 
given by: ,ba LL  ,ba SS  ,baθθ  ,baφφ  ,2 )( ba SL  ,2 )( baL θ  ,2 )( baL φ  ,2 )( baS θ  

)(2 baS φ  and ,2 )( baφθ  where aaa trL 1λ+≡  and .2 aaa trS λ+≡  It also follows 

that 211 λλ−=a
a SL , ,1 2

1λ−=a
a LL  2

21 λ−=a
a SS  and 1λ  and 2λ  are nowhere 

equal. Now at ,p  the symmetric tensor )2( ;1 baabab hP ηγ +=  can be written as a 
linear combination of the basis members of the 10-dimensional vector space and 
use the fact that baabab hP ;1 2ηγ +=  has eigenvectors θλ ,1tr +  with same 

eigenvalue, say 1ζ  and similarly for the symmetric tensor )2( ;2 baabab hP ηγ +=  
can be written as a linear combination of the basis members of the 10-dimensional 
vector space and use the fact that baabab hP ;2 2ηγ +=  has eigenvectors φλ ,2tr +  

with same eigenvalue, say .2ζ  Hence on M  one has after the use of 
completeness relation (gab = γ3LaLb +  γ4SaSb + θaθb + φaφb)  

 
,2

,2

22222;2

11111;1

abbababaabbaab

abbababaabbaab

LcLcbLLagh
ScScbSSagh

θθθθζηγ
φφφφζηγ

++++=+

++++=+
 (8)  

where 12121 ,,,, cbbaa  and 2c  are real functions on .M  Since 21 γγ ≠  equation 
(8) gives  

 
,22

,22

)(9)(876543;

)(9)(876543

babababababaabba

babababababaabab

LbSbbbLLbSSbgb

LaSaaaLLaSSagah

θφθθφφη

θφθθφφ

++++++=

++++++=
  (9)  

where 8765439876543 ,,,,,,,,,,,, bbbbbbaaaaaaa  and 9b  are functions on some 
open subregion of .M  Now we are interested in finding the projective vector fields 
by using the relation  
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 , , 0, 1, 2, 3.X ab abL g h a b= ∀ =   (10) 

Writing equation (10) explicitly and using first equation of (9) and (4) we get 
ten coupled non linear equations. In order to find the projective vector field we 
need to solve ten equations. After some tedious and lengthy calculation one finds 
that .0=aη  Hence no proper projective collineations exist in this case. Projective 
collineations in this case are Killing vector fields.  

Now consider the case when γ1 = γ2. Equation γ1 = γ2 ⇒ ρ = 0. Substituting 
back and again writing equation (10) explicitly in to ten equations. After some 
lengthy calculation one finds that ηa = 0 which implies in this case no proper 
projective collineations exists. Projective collineations in this case are Killing 
vector fields.  

Now consider the case when α6 = 0 ⇒Bt(t, r) = 0 ⇒ B = B(r) and also we 
have α5 = 0. It is important to mention here that throughout in this paper we have 
B = B(r). Substituting α6 = 0 and α5 = 0  in equation (7) we get  

 

1 1 2 2
1 2

3 3 4 4
2 3

5 5 6 6
3 4

, ,

, ,

, .

ab cd ab ab cd ab
cd cd

ab cd ab ab cd ab
cd cd

ab cd ab ab cd ab
cd cd

R F F R F F

R F F R F F

R F F R F F

α α

α α

α α

= =

= =

= =
  

Here, at p M∈  one can choose the tetrad ),,,( φθrt  satisfying 
1a a a a

a a a at t r r θ θ φ φ− = = = =  (with all other inner products zero) such that the 
eigenbivectors of the curvature tensor at p M∈  are all simple with blades spanned 
by the vector pairs ),(),,( ϕθ tt  each with eigenvalue )(2 pα  and ),(),,( ϕθ rr  
each with eigenvalue )(3 pα . Here the vector fields are chosen as 

0 1 22 2e , e ,δ δ θ δ= = =
A B

a a a a a at r r  and .sin 3
aa r δθφ =  We are considering the open 

sub region where 2α  and 3α  are nowhere equal and 2 0.α ≠  The rest will be 
considered latter. It is important to note that we are using ( , , , )t r θ φ  as both 
coordinates and vector fields. Thus at ,p  the tensor 2 ;2ab ab a bP hα η= +  has 

eigenvectors , ,t θ ϕ  with same eigenvalue, say 1β  and 3 ;2ab ab a bP hα η= +  has 
eigenvectors , ,r θ ϕ  with same eigenvalue, say 2β . Hence on M  one has after the 
use of completeness relation ( )ab a b a b a b a bg t t r r θ θ φ φ= − + + +   

 baabbaab rrgh 31;2 2 ββηα +=+ ,            3 ; 2 42 ,ab a b ab a bh g t tα η β β+ = +  (11) 
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where 1 2 3 4, , andβ β β β  are real functions on M. Since 32 αα ≠  then it follows 
from (6) that  

 babaabab ttErrDgQh ++= , ,; babaabba ttKrrGgF ++=η  (12) 

where , , , , andD E F G K Q  are functions on some open subregion of .M  Next 
one substitutes the first equation of (12) in (2), we get  

 ; ; ; ;

2 .
c ab c a b a c b b c a c a b a c b b c a

ab c ac b bc a

Q g D r r D r r D r r E t t E t t E t t
g g gη η η

+ + + + + + =
= + +

 (13) 

Contracting the above equation with baφθ , and then comparing both sides, 
we have 0== a

a
a

a φηθη  which implies ).,( rtηη =  Now contracting equation 

(13) with baθθ  we get ccQ η2, =  which implies ).,( rtQQ =  Once again 

contracting equation (13) with batt  and barr , we get )(tEE =  and ),(rDD =  
respectively. Now consider the first equation of (12) and using (4), we get the 
following non-zero components of abh   

 
[ ] [ ]( , ) ( )

00 11

2 2 2
22 33

( ) ( , ) e , ( , ) ( ) e ,

( , ) , ( , ) sin .

A t r B rh E t Q t r h Q t r D r

h Q t r r h Q t r r θ

= − = +

= =
 (14)  

Now we are interested in finding the projective vector fields by using the 
relation (10). Writing equation (10) explicitly and using (4) and (14) we get  

 ( ) ( ) ( ) ( )0 1 0
,0, , 2 ,t rA t r X A t r X X Q t r E t+ + = −  (15) 

 ( ) ( ),1 0
,0 ,1e e 0B r A t rX X− =  (16) 

 ( ),2 2 0
,0 ,2e 0A t rr X X− =  (17) 

 ( ),2 2 3 0
,0 ,3sin e 0A t rr X Xθ − =  (18) 

 ( ) ( ) ( )rDrtQXXrBr +=+ ,2 1
1,

1  (19) 

 ( )2 2 1
,1 ,2e 0B rr X X+ =   (20) 

 ( )2 2 3 1
,1 ,3sin e 0B rr X Xθ + =  (21) 

 ( )rtQrXrX ,22 2
2,

1 =+  (22) 

 2 3 2
,2 ,3sin 0X Xθ + =  (23) 
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 ( ).,2cot22 3
3,

21 rtQrXrXrX =++ θ  (24) 

Considering equations (17) and (18) and differentiating with respect to φ  and 
,θ  respectively and subtracting them we get  

 [ ] .0sin 2
03,2,

3
0,

2 =+− XXθ  (25) 

Differentiating equation (23) with respect to t  we get  

 .0sin 2
03,

3
02,

2 =+ XXθ   (26) 

Subtracting equation (25) from equation (26) and upon integrating we get  

 3 1 2cosec ( , , )d ( , , ),X E t r t E rθ φ θ φ= +∫   

where ),,(and),,( 21 φθφ rErtE  are functions of integration. Using the above 
information in equation (18) one has  

 0 ( , ) 2 1 3e sin ( , , )d ( , , ),A t rX r E t r E t rθ φ φ θ−= +∫   

where ),,(3 θrtE is a function of integration. Substituting the value of 0X  in 
equations (16) and (17) we get  

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

1 2 1 1

,2 1 3 4

,2 1 3 5
2

sin e , , d d 2 sin e , , d d

sin e , , d d e , , d , , ,

1cos ( , , )d d e ( , , ) d , , ,

B r B r
r

B r A t r B r
r r

A t r

X r E t r t r E t r t

r A E t r t t E t r t E r

X E t r t E t r t E r
r θ

θ φ φ θ φ φ

θ φ θ θ φ

θ φ φ θ θ φ

− −

− −

⎡ ⎤ ⎡ ⎤= + −⎣ ⎦ ⎣ ⎦
⎡ ⎤− + +⎣ ⎦

= + +

∫ ∫ ∫ ∫
∫ ∫ ∫

∫ ∫

 

where ),,(4 φθrE  and ),,(5 φθrE  are functions of integration. In order to find 
the projective vector field X  we are interested to find the all unknown functions 

),,,(),,,( 21 φθφ rErtE  ),,,(3 θrtE  ),,(4 φθrE  and ).,,(5 φθrE  To avoid 
lengthy details we shall write only the results. From the lengthy and tedious 
calculations there exists only one case when the above space-time admits proper 

projective collineation which is in this case ( )2ln rbA=  and ,ln 2 arb
cB
+

=  

where , , ( 0, 0).a b c b c∈ ≠ ≠  The space-time (4), after a rescaling of ,t  takes 
the form  

 ( )2 2 2 2 2 2 2 2
2d d d d sin d .θ θ φ= − + + +
+

cs r t r r
br a

 (27) 
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The above space-time (27) admits four linearly independent Killing vector 

fields which are , cos cot sin , sin cot cos , .φ θ φ φ θ φ
θ ϕ θ φ φ

∂ ∂ ∂ ∂ ∂ ∂
− +

∂ ∂ ∂ ∂ ∂ ∂t
 

Proper projective collineation after subtracting Killing vector fields is  

 2(0, ( ), 0, 0)
2

= +
rX br a   (28)  

and one form is .)( aa rbr=η  The above space-time (27) becomes special class of 
static spherically symmetric space-time.  

Now consider the case when .02 =α  From equation (6) one can see that the 
rank of the 66×  Riemann tensor is 3 or ,0=d

bcd
a tR  where at  is a timelike 

vector field and unique solution of .0=d
bcd

a tR  Here, it is important to mention 
here that )(rBB =  and .32 αα ≠  The condition 0),(02 =⇒= rtArα  which 
gives ).(tAA =  The line element (4) can, after a rescaling of ,t  be written in this 
form  

 ds2 = –dt2 + eB(r)dr2 +r2 (dθ2 + sin2θdφ2). (29)  

The above space-time is 1+3 decomposable. It follows from [3] that space-
time (29) does not admit proper projective collineation. The projective collineation 
admitted by (29) is a proper affine vector field which is .att  

Consider when α2 = α3 (and excluding the special case when constant=A  
and 0constant ≠=B ) in (4). It follows from [3, 6] that projective collineation 
admitted by (4) are Killing vector fields which are given in equation (5).  

Now consider the special case when constant=A  and .0constant ≠=B  
The rank of the 66×  Riemann tensor is 1 and there exists two independent 
solutions, which are 0=d

bcd
a tR  and 0=d

bcd
a rR , but only one independent 

covariantly constant vector field aa tt ,=  satisfying 0; =bat . Substituting the 
above information in equation (4) and after a rescaling of ,t  the line element takes 
the form  

 2 2 2 2 2 2 2d d d (d sin d ),s t k r r θ θ ϕ= − + + +  (30) 

where ( e ) ( 0 or 1).= ∈ ≠Bk k  The space time is clearly 1+3 decomposable but 
the rank of the 66×  Riemann tensor is 1. It follows from [3] that the above space-
time (30) which admits proper special projective collineation which is:  

 2( , , 0, 0).U t tr=  (31)  
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3. CONCLUSIONS 

A study of special non-static spherically symmetric space-times according to 
their proper projective symmetry is given by using the direct integration and 
algebraic techniques and real eigenvalues and eigenbivectors. Using the above 
mentioned techniques we have proved that the special class of the above space-
times (4) (which become the special class of static spherically symmetric space-
times) admit proper projective collineation. This is the space-time given in 
equation (27) and proper projective collineation is given in equation (28). It is 
important to mention that different approaches [7–33] were adopted to study 
projective collineations.  
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