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Abstract. In this paper a study of proper projective collineation in special non-static
spherically symmetric space-times is given by using real eigenvalues and eigenbivectors of
the Riemann tensor, direct integration and algebraic techniques. From the above study
we have shown that when the above space-time admits proper projective collineation
they become a very special class of static spherically symmetric space-times.
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1. INTRODUCTION

The aim of this paper is to find the existance of proper projective collineation
in special non-static spherically symmetric space-times. In this paper an approach,
which is given in [1] is used to study the projective collineation for the above
space-times. Doubtless, this approach is lengthy but it will definitely tell the
existance of a proper projective collineation. Throughout M represents a four
dimensional, connected, Hausdorff space-time manifold with Lorentz metric g of

signature (—, +, +, +). The curvature tensor associated with g ,, through the Levi-
Civita connection, is denoted in component form by R“sa, and the Ricci tensor
components are R, = Ra». The usual covariant, partial and Lie derivatives are

denoted by a semicolon, a comma and the symbol L, respectively. Round and
square brackets denote the usual symmetrization and skew-symmetrization,
respectively. The space-time M will be assumed non flat in the sense that the
curvature tensor does not vanish over any non empty open subset of M.

Any vector field X on M can be decomposed as

1
Xa;b zzhab +F;b’ (1)
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where h,(=h,,)=L,g, and F,(=—F, ) are symmetric and skew symmetric
tensors on M, respectively. Such a vector field X is called projective if the local
diffeomorphisms y, (for appropriate ¢) associated with X map geodesics into

geodesics. This is equivalent to the condition that /4, satisfies [2]

hah;c = 2gab77c + gacnb + gbcﬂa > (2)

for some smooth closed 1-form on M with local components 77,. Thus 77, is
locally gradient because the connection is metric and will, where appropriate, be
written as 77, = n, for some function 77 on some open subset of M. If X is a
projective collineation and 77,, =0 then X is called a special projective
collineation on M. The statement that /4, is covariantly constant on M is, from
(2), equivalent to 77, being zero on M and is, in turn equivalent to X being an
affine vector field on M (so that the local diffeomorphisms i/, preserve not only
geodesics but also their affine parameters). If X is projective but not affine then it
is called proper projective collineation [3]. The vector field X is said to be proper
special projective collineation, if X is not affine and 7., =0. Further if X is
affine and /%, =2cg,,c € R then X is homothetic (otherwise proper affine). If
X is homothetic and ¢ # 0 it is proper homothetic while if ¢ = 0 it is Killing.

The second order skew symmetric tensor F, is called a bivector (at p).
Regarding F, as a skew matrix, its rank is therefore an even number 0, 2 or 4. If it
is 0 then F,, = 0. Suppose if the rank of F, is 2 then it is called simple bivector
otherwise it is called non-simple (for more detalis see [3]). Here, at p € M one
may choose a orthonormal tetrad (t, r, 6, 9) satisfying
—tt, =r'r, =00, =¢°¢, =1 (with all others inner products zero). Since at
D, the set of bivectors at p is a six-dimensional vector space which can spanned
by the six bivectors given by [3]

lEzb = 2t[arb]’ 2Fab = 2t[u0b]’ 3F;b = 2t[a¢b]’
4Fab = 2r[aeb]’ SFab = 27”[a¢b]a 6Ezb = 20[a¢b]'

In general, however, equation (2) is difficult to handle directly and alternative
techniques are needed. One such technique arises from the following result. Let X
be a projective collineation on M so that (1) and (2) hold and let ' be a real
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curvature eigenbivector at pe M  with eigenvalue A€ R (so that
R®F“ =AF“ at p)thenat p one has [4]

P F%+P . F'.=0 (P, =Ah, +21,,). (3)

Equation (3) gives a relation between F“» and P, (a second order
symmetric tensor) at p and reflects the close connection between 4, 77,,, and
the algebraic structure of the curvature at p. If F' is simple then the blade of F' (a
two dimensional subspace of 7 M) consists of eigenvectors of P with same
eigenvalue. Similarly, if /' is non-simple then it has two well defined orthogonal

timelike and spacelike blades at p each of which consists of eigenvectors of P
with same eigenvalue but with possibly different eigenvalues for the two blades [3].

2. MAIN RESULTS

Consider a non static spherically symmetric space-time in the usual
coordinate system (¢,7,60,4) (labeled by (x°,x',x*,x), respectively) with line
element [5]

ds* = —e"de? + " dr? + 12 (d0 +sin® 6d ). (4)

The above space-time (4) admits three linearly independent Killing vector
fields which are

cos¢i—cotﬁsin¢i, sin¢i+cot6’cos¢i, i (%)
06 op 06 op O¢

The non-zero independent components of the Riemann tensor are

2 =L sansun e (A (t,r)+24,(t,r) —e" (B (t,r) + 2B, (t,r) — Ea
"4 A(t,7)B,(t,r)) — """ A (t,r)B,(t,r)

12

13

| |
R0202 = R0303 - _?e B(1, )A,(f,”) =a,, R" =R",=—2B (t,r)e """ =a,
r 2r

1 1
23 _ ~B(t,r)\ — A _
R 23 _r_z(l_e )=a45 R0212:R0313:_;B,([,7")e au )=0[5,

1
RIZOZ = R1303 = _Z_Bt(t, r)eib)(tyr) = a{,a (6)
r
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where a1, 0, 03, 04, 05 and o are real functions of 7 and » only. It also follows that
a6=¢"? as. One can write the above equation (6) as

b 1 d 1 b b 2 d 2 b 4 b
R" VFU=qF", R* 2 F“ =qF" +qF",

ab 3 cd 3 rrab 5 rrab ab 4 cd __ 4 rrab 2 rrab
R”, P F“ =@ F"+a’F", R",‘F“=a'F"+a’F", (1)
ab 5 cd 5 rrab 3 ab ab 6 cd __ 6 rrab
R” S FY=q’F"+a}F", R",6 °F“=qg F"

It is important to note that the method we are going to follow is given in [1].
Define 'W,="F, +A°F, and *W,=’F, +n°F,. We are interested to find

that whether these bivectors lWab and zWab are the real eigenbivectors of the

Riemann tensor for the real choice of 4 and 7. Equation (7) gives

a, +Aa
Radechd:(a3+/f{/a6)(4Fab)+( 5 2)2Fab)
(a, + )
and
+
Rade 2ped _ (0!3 4 /10%) spab a; +1na, Sy,
a} + ﬂa6
lWab and 2Wab are the eigenbivectors of the Riemann tensor for the choice of
o, —o, )+ a,—a,)—
]1 — 771 :M and /12 — 772 — M’ Where p2 = (a3 _a2)2_4 a5a6
20, 20,

and ag # 0. The case when as =0 will be discuss later. One can easily see that in
general A,, 7n,, A, and 7, are not real. Hence the eigenbivectors of the Riemann

tensor are not real in general. Here, we are only interested in real eigenbivectors of
the Riemann tensor with real eigenvalues. There exist the following possibilities

p>=0or (o, -, )2 —4asa, 2 0. Substituting the above information back we get

a,+a,+p)

Rubtd(éthd_i_ﬂlecd):( : (4Fab+ﬂ’12ng),
Rade(Sch_,’_iz 3F“’):(a3++2_p)(sFab+/12 3Fub)‘

The bivectors 'W*® = (*F*® + 12F®) and *W** = (CF®+ 1, *F®) are simple.
1 1
Now define y, =E(053 +a,+p) and y, = 5(0(3 +a,—p). Here, at pe M one

can choose the tetrad (¢,7,0, @) satisfying —t“t, =r‘r, =00, = ¢°¢, =1 (with
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all other inner products zero). Here the vector fields are chosen as
A B

t,=e28", r =e28!, 0, =r5’ and ¢ =rsind 5.1t is important to note that we
are using (¢, r, 8, ¢) as both coordinates and vector fields. The eigenbivectors lWab
and ’ W, of the curvature tensor at p € M are simple with blades spanned by the

vector pairs (r+ 4,¢,0) each with eigenvalue y,(p) and (r + A,t,4) each with
eigenvalue 7, (p). We consider the open sub region where y, and y, are nowhere
equal. The rest will be considered latter. It is important to note that we are
considering the case when p*> 0. The case when p=0= » =5 which gives
contradiction to our assumption that y, and y, are nowhere equal. The case when
7, =7, will consider later. At p, the second order symmetric tensors is a 10-
dimensional vector space which can spanned by the 10 basis symmetric tensors
given by: L, L,, S,S,, 0,0,, ¢,8,, 2L,S,, 2L,0,, 2L @), 25,0,
28,9, and 20,9, , where L, =r,+ A, and S, =r, +A,1,. It also follows
that L, S* =1-A44,, L,L° =1-4, S, =1-4; and A, and A, are nowhere
equal. Now at p, the symmetric tensor P, (=y, h,, +27,,) can be written as a

linear combination of the basis members of the 10-dimensional vector space and
use the fact that P, =y, h, +2n,, has eigenvectors r+ A,z,6 with same

eigenvalue, say ¢, and similarly for the symmetric tensor P,(=y,h,+2n,,)

can be written as a linear combination of the basis members of the 10-dimensional
vector space and use the fact that P, =y, h,, +21,, has eigenvectors 7 + A,¢,¢

with same eigenvalue, say & ,- Hence on M one has after the use of
completeness relation (g, = %3LaLy + 74S.Sy + 0.0, + dudy)

71 Ry +277a;b =¢, 8, ta,S,S, +bd. ¢, +¢,S,¢, +¢S,8,,

8
7/2 hab +277a;b = ngub +a2LaLb +b20a9b +c2La0b +02Lb9u’ ( )

where a,,a,,b,,b,,c, and c, are real functions on M. Since y, # y, equation
(8) gives
hy, =ag, +a,8,S, +asL, L, +ad,¢,+a,0,0, + 2aSS(a¢b) + 2a9L(a0b

a

)ﬂ
)
Nap = b;g., +b,8,S, +b;L,L, +b¢,¢, +b,6,0, +2bSS(a¢b) +2b9l‘(a0b)’

where a,,a,,as,a,,a,,a4,d4,b;,b,,b,b,,b,,b; and b, are functions on some

open subregion of M. Now we are interested in finding the projective vector fields
by using the relation
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L.g,=h,, vV oa, b=0, 1, 2, 3. (10)

Writing equation (10) explicitly and using first equation of (9) and (4) we get
ten coupled non linear equations. In order to find the projective vector field we
need to solve ten equations. After some tedious and lengthy calculation one finds

that 77, = 0. Hence no proper projective collineations exist in this case. Projective

collineations in this case are Killing vector fields.

Now consider the case when y = . Equation == p =0. Substituting
back and again writing equation (10) explicitly in to ten equations. After some
lengthy calculation one finds that 7,=0 which implies in this case no proper
projective collineations exists. Projective collineations in this case are Killing
vector fields.

Now consider the case when as =0 =B,(t, r) =0 = B = B(r) and also we
have o5 = 0. It is important to mention here that throughout in this paper we have
B = B(r). Substituting as =0 and a5 = 0 in equation (7) we get

1 ab ab 2 cd
=a F", R F“ =«a

ab 1 cd 2 yvab
R cd F 1 cd 2 F ’

ab 3 cd 3 ab ab 4 cd 4 y~ab
R F*=a’F", R F“ =a'F”,

cd cd

ab 5 cd 5 yrab ab 6 cd 6 yab
R F" =a F, R F" =a F".

cd cd

Here, at peM one can choose the tetrad (¢,7,0,¢9) satisfying
—t't,=r'r,=0"0,=¢" ¢, =1 (with all other inner products zero) such that the
eigenbivectors of the curvature tensor at peM are all simple with blades spanned
by the vector pairs (¢,6), (¢,¢) each with eigenvalue «,(p) and (r,60), (r,9)

each with eigenvalue a,(p). Here the vector fields are chosen as

A B
t,=e28’, r =e8!, 6, =r5 and ¢, =rsin@J.. We are considering the open

sub region where «, and ¢, are nowhere equal and «, #0. The rest will be
considered latter. It is important to note that we are using (z,r,6,4) as both
coordinates and vector fields. Thus at p, the tensor P, =, h,+2 5, has
eigenvectors 7,0, with same eigenvalue, say S, and P, =a, h,+2 75, has
eigenvectors r,60,¢ with same eigenvalue, say f,. Hence on M one has after the

use of completeness relation (g, =—t,t, +7.r, +0,0, + ¢.4,)

Qhy +21, =B 8w + Bs Tl a;h, +21,, =58, +Bitt, (11)
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where f,,p,,5, and p, are real functions on M. Since «, # «; then it follows
from (6) that

h,=0g,+Drr,+Ett,,n,=Fg,+Grr+Kt.t, (12)
where D,E,F,G, K and Q are functions on some open subregion of M. Next
one substitutes the first equation of (12) in (2), we get

0. g,+tD, rn+D r.n+D . +E tt,+E t, . t,+E (.1 =
c a c a a;c'b el a a;c’b c’a (13)
= 2’ gab 77(? +gac 7717 +gbc 7711'

Contracting the above equation with € “@”, and then comparing both sides,
we have 17,0 =n,¢° =0 which implies 77 =7(¢,7). Now contracting equation
(13) with 60" we get Q. =2n, which implies Q=Q(¢r). Once again
contracting equation (13) with ¢“¢” and r“r", we get E = E(t) and D = D(r),

respectively. Now consider the first equation of (12) and using (4), we get the
following non-zero components of /1,

o =[E@)=0N] "7, hy =[0(r)+ D] ",
2 = o(t,7) rz’ h33 =Q(t,r) 7 sin® 0.

Now we are interested in finding the projective vector fields by using the
relation (10). Writing equation (10) explicitly and using (4) and (14) we get

(14)

A4 ()X + A(tr)X' + 2X5 = 0(t,r) — E(2) (15)
X, — X =0 (16)

X - "X =0 (17)

risin’ X - ”XO =0 (18)
B.(r)X'+2X\=0(t,r)+D(r) (19)

PX? o+ VX, =0 (20)

rsin’ X3 + &"Xx. =0 1)

2X" +2r X’z2 =rQ(t,r) (22)

sin 90X + X3 =0 (23)
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2X1+2rcot9X2+2rXf_;,=rQ(t,r). (24)
Considering equations (17) and (18) and differentiating with respect to ¢ and
0, respectively and subtracting them we get
~in?0.x3 ], + x3, =0, (25)
Differentiating equation (23) with respect to ¢ we get
2 3 2

sin” 0 X, + X, =0. (26)

Subtracting equation (25) from equation (26) and upon integrating we get

X = cosec 0_[ E'(t,r,§)dt + E*(r,0,9),

where E'(t,r,¢) and E*(r,0,¢) are functions of integration. Using the above
information in equation (18) one has

X' =e P sin 0] E'(t,r, g)dg+ B (1,1,0),

where E°(t,r,0) is a function of integration. Substituting the value of X° in
equations (16) and (17) we get

X' =7 siné’efB(")JAUEi(t,r,¢)d¢} dt+2rsin@ e*B(V)J.UE1 (t,7,9) d¢} dr—
- 7 sinHe’B(")J. [A,4IE‘(t,r,¢)dt] dt+IeA("")7B(r)E3 (t,r,0)dt+E*(r,6,9),

X = cosej E'(t,r,$)dpdt + iz j ' “ENt,r0) dt + E(r.60.4),
r

where E*(r,0,4) and E°(r,0,¢) are functions of integration. In order to find
the projective vector field X we are interested to find the all unknown functions
E'(t,r,9),E*(r,0,4), E’(t,r,0), E'(r,0,4) and E’(r,6,¢). To avoid

lengthy details we shall write only the results. From the lengthy and tedious
calculations there exists only one case when the above space-time admits proper

c
br*+a
where a, b, ceR(b#0, c¢#0). The space-time (4), after a rescaling of 7, takes

projective collineation which is in this case A:ln(brz) and B=In

3

the form

ds* =—rde +———dr* +7* (d6° +sin’ 6d¢*). 27)
br-+a



326 Ghulam Shabbir, Amjad Ali 9

The above space-time (27) admits four linearly independent Killing vector

fields which are 2, cos¢£— cotHsin¢i, sin ¢i+ cot¢9c05¢i, i
ot 00 op 00 o¢ 0¢
Proper projective collineation after subtracting Killing vector fields is

X =(0, %(br2+a), 0, 0) (28)

and one form is 77, = (#b)r,. The above space-time (27) becomes special class of
static spherically symmetric space-time.

Now consider the case when «, = 0. From equation (6) one can see that the
rank of the 6x6 Riemann tensor is 3 or R%ct’ =0, where ¢ is a timelike
vector field and unique solution of Rpat’ = 0. Here, it is important to mention
here that B = B(r) and «, # a,. The condition o, =0 = A4 (¢,r) =0 which
gives A = A(t). The line element (4) can, after a rescaling of ¢, be written in this
form

ds’ =—df + &27di? +7 (& + sin®0d ). (29)

The above space-time is 1+3 decomposable. It follows from [3] that space-
time (29) does not admit proper projective collineation. The projective collineation
admitted by (29) is a proper affine vector field which is #¢°.

Consider when a, = a3 (and excluding the special case when A4 = constant
and B =constant # 0) in (4). It follows from [3, 6] that projective collineation
admitted by (4) are Killing vector fields which are given in equation (5).

Now consider the special case when A4 = constant and B = constant # 0.
The rank of the 6x6 Riemann tensor is 1 and there exists two independent

solutions, which are R“sat’ =0 and R%ea r* =0, but only one independent
covariantly constant vector field 7, =¢, satisfying 7,, =0. Substituting the
above information in equation (4) and after a rescaling of #, the line element takes
the form

ds’ = —df’ +kdr’ +7*(d6’ +sin® Odp?), (30)

where k(=e®)eR(k#0 or 1). The space time is clearly 1+3 decomposable but
the rank of the 6 x 6 Riemann tensor is 1. It follows from [3] that the above space-
time (30) which admits proper special projective collineation which is:

U=(,,0,0). 31)
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3. CONCLUSIONS

A study of special non-static spherically symmetric space-times according to
their proper projective symmetry is given by using the direct integration and
algebraic techniques and real eigenvalues and eigenbivectors. Using the above
mentioned techniques we have proved that the special class of the above space-
times (4) (which become the special class of static spherically symmetric space-
times) admit proper projective collineation. This is the space-time given in
equation (27) and proper projective collineation is given in equation (28). It is
important to mention that different approaches [7-33] were adopted to study
projective collineations.
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