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Abstract. In a low dimensional model which describes the dynamics of the plasma 
pressure gradient and of the amplitude of the displacement of the magnetic field in 
tokamaks we study the Hopf bifurcation. We analyze the fast-slow dynamics which 
appears for small normal heat diffusion and we corroborate the results with those 
observed in experiments. 
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1. INTRODUCTION 

Oscillations of plasma's parameters (sawteeth, edge localized modes 
(ELMs), frequently interrupted regime of neoclassical tearing modes) are observed 
when some large scale plasma instabilities do not lead to an immediate termination 
of a discharge. The understanding of such phenomena is an important tool in 
controlling the whole reaction. There are many fundamental approaches to the 
subject, but, despite the huge theoretical and experimental effort, it seems that the 
phenomena are not fully understood. 

In our paper we focus on a low dimensional model which describes the 
dynamics of the plasma pressure gradient and of the amplitude of the magnetic 
field displacement. 

Our low-dimensional model [1] is given by 
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where nξ  is the amplitude of the magnetic field displacement, np′  is the plasma 
pressure gradient at the plasma edge, nt is  time, δ is dissipation/relaxation of the 
instability responsible for the ELM burst, η is diffusion and h is input power in the 
system. The index n  means that all the quantities are normalized. 

The first equation describes the evolution of the magnetic field perturbation 
and relaxation dynamics. The second equation describes power balance in the 
system including the effect of unstable modes. 

The physically relevant ranges of the parameters are [1] 

8.008.0 << δ , 4.0006.0 <<η , 21 << h . 

The system (1) can be transformed into a system of differential equations of 
first order, convenient for a rigorous mathematical analysis: 

 ( ) ( )21 ; ;x z y x y x z h z y zδ η
• • •

= − − = = − − . (2) 

The model has some common properties with the classical Lorenz system 
[2], considered a benchmark for chaotic systems theory: it is dissipative and 
invariant under the change of coordinates ( ) ( )zyxzyxS ,,,, −−= . It exhibits 
complex dynamics, comparable with that of Lorenz's system (double scroll 
butterfly-like attractor, coexistence of many attractors in the phase space, 
bifurcations) [3]. However, it does not belong to Lorenz-like family systems [4] 
because the non-linear perturbation is not quadratic. 

Our model is more complicated than the Lorenz system because it has two 
different time scales. It is a fast-slow system with two fast variables and a slow 
one. From a practical point of view, we are interested in studying the oscillations of 
the sawtooth-type, characterized by two time-scales: a long rise time, when the fast 
variables are almost zero and the slow variable rises almost linearly, and a very 
short crash time, when the fast variables suddenly increase and rapidly decrease. 
Many interesting papers have been recently dedicated to the study of fast-slow 
systems because they are related to phenomena that occur in ecosystems, medicine, 
changes in the climate, financial markets (see [5] and the references therein), but 
also in fusion plasma fusion [6]. 

In this paper we make a classical analysis of the system (2) for small values 
of the parameters (for which the sawtooth oscillations occur), starting from the 
classical bifurcation theory and incorporating the two time-scales. 
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The paper is organized as follows: in Section 2 we present the general 
properties of the system. Section 3 is devoted to the analysis of the main 
bifurcations that occur in the system and Section 4 contains the results related to its 
fast-slow dynamics. The conclusions are formulated in Section 5. 

2. GENERAL PROPERTIES OF THE SYSTEM 

The system (2) is generated by the vector field 33: RRX → , 
( ) ( ) ( )( )zyzhxxyzzyxX 2,,1,, −−⋅⋅−⋅−= ηδ . 

Because the divergence ( )2div( )X yδ η η= − + + ⋅  is negative, it results that 

the system is dissipative, i.e. its flow contracts the volumes. This means that, for 
any positive values of the parametersδ , η  and h , all orbits ( ) ( ) ( )( ){ }0,,, ≥ttztytx  
asymptotically approach one of the attractors of the system. 

Practically, one can observe that the values of )()( tyt
notation

nn =ξ  

and )(' tzp
notation

n =  exhibit temporal oscillations independently of the initial 
conditions. However their pattern (damped, ELM, periodic, or stochastic) depends 
on the parameter values as shown in Fig. 1 where the experimental regions 
( 13 108108 −− ⋅≤≤⋅ δ , 24 104106 −− ⋅≤≤⋅ η ) are shown for three values of the input 
power h , namely 2.1=h , 5.1=h  and 8.1=h .  

 

 
Fig. 1 – Patterns of the oscillations of the system (1) for h = 1.2 (left), h = 1.5 (center), and h = 1.8 

(right): damped (zone I), sawtooth (zone II), periodic (zone III), stochastic (zone IV). 

The figures must be interpreted in the following way:  
– if ( )ηδ ,  belongs to zone I, the system exhibits damped oscillations. The 

values of nξ   and nη  become almost constant after a long enough time. In this case 
each attractor of the system is formed by a single point. 
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– if ( )ηδ ,  belongs to zone II, the system is characterized by oscillations of 
sawtooth-type, with a long rise time and a short crash time. This is typical of 
ELMs. In this case the attractor of the system is a periodic orbit. 

– if ( )ηδ ,  belongs to zone III, the oscillations are periodic and the rise time 
is comparable with the crash time. In this case the attractor of the system is also a 
periodic orbit.  

The dynamical difference between zone II and zone III lies in the motion 
speed on the orbit. For the systems corresponding to ( )ηδ ,  in zone II, one can 
observe large variations between the small speed during the rise time and the great 
speed during the crash time. In systems corresponding to ( )ηδ ,  in zone III, the 
speed during the rise is comparable with the speed during the crash time: 

– if ( )ηδ ,  belongs to zone IV the oscillations are not periodic. The attractor 
of the system is a complicated curve (strange attractor) and the dynamics is not 
regular. It is usually called stochastic (unpredictable) or chaotic. 

The system (2) is invariant with respect to the map   33: RRS → , defined by 
( ) ( )zyxzyxS ,,,, −−= , which is the symmetry with respect to the Oz  axis. 

This property has important consequences: 
a) ( ) ( )( )000000 ,,,, zyxOSzyxO =−− . 
b)  If ( )000 ,, zyx  is an equilibrium point of (2) then also ( )000 ,, zyx −−  is an 

equilibrium point of (2).  
c)  If ( )A  is an attractor, then ( ) ( ) ( ){ }AzyxzyxSAS ∈= ,,|,,  is also an 

attractor. 
d)  If the point ( )cbaM ,,=  belongs to the domain of attraction of the 

attractor ( )A , then ( ) ( )cbaMS ,,−−=  belongs to the domain of attraction of ( )AS . 
The domains of attraction are symmetric with respect to the Oz  axis. 

The symmetry group is { }SIdZ R ,3
2 =   and we can use some specific 

techniques to study the bifurcations [7, pp. 276–288].  
An important consequence of the symmetry is that there are twin 

bifurcations of the equilibrium points. 

3. BIFURCATIONS OF THE EQUILIBRIUM POINTS 

Technical computations show that: 
Proposition 1. a) For 1<h  the system (2) has a unique equilibrium 

),0,0(1 hP = which is a hyperbolic sink. 
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b) For 1>h  the system (2) has three equilibria: 1 (0, 0, )P h=  which is a 

saddle point and two S-conjugate equilibria ( )2,3 0, 1, 1P h= ± − . 

Using the Routh-Hurwitz criterion one can prove that 3,2P  are stable if 

 ( ) ( ) .012 >−−+ hhh ηδδ  (3) 

In this situation the points 3,2P  are only local attractors. Numerical 
simulations show the existence of other attractors (limit cycles or strange attractors, 
depending on the values of h,,ηδ ) in the phase space. 

This mathematical result is interesting from a physical point of view. If the 
normalized input power h  is small ( 1<h ), the system is stabilized in time. The 
magnetic field approaches the unperturbed configuration (because ( ) 0→ty ) and 
the normalized plasma pressure gradient at the plasma edge becomes almost 
constant (because ( ) htz → ). 

If the normalized input power h  is large enough ( 1>h ), which is commonly 
used in experiments, the displacement of the magnetic field, and the plasma 
pressure gradient at the plasma edge generally oscillate, excepting the situation 
when the initial conditions of the system are close to ( ) 1,10 =′−±= nn phξ   and 

( ) 00 =′nξ . 

3.1. PITCHFORK BIFURCATION 

The pitchfork bifurcation occurs when the equilibrium point 1P  looses its 
stability. 

Proposition 2. For 1=h  the system (2) undergoes a supercritical pitchfork 
bifurcation at 1 (0, 0, )P h= . For 1<h  there is a unique equilibrium point 

),0,0(1 hP =  which is stable and for 1>h  there are three equilibrium points: 

),0,0(1 hP =  (which is unstable) and ( )2,3 0, 1, 1P h= ± − , which are stable near 

1=h . 
In the bifurcation diagram (Fig. 2) the solid and dashed curves represent the 

stable and unstable equilibrium points, respectively. The pitchfork bifurcation, 
which occurs at 1=h , is labelled “A”. The values of the bifurcation parameter h  
are plotted on the horizontal. 
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Fig. 2 – Bifurcation diagram of system (2) for 0.2, 2.δ η= =  

In Fig. 2 one can observe that, for fixed values of δ  and η , the twin 
equilibrium points 3,2P  are stable near 1=h  (the segment AB ), then they become 
unstable for larger values of h  (the segment BC ) and finally they gain their 
stability when h  increases. 

3.2. HOPF BIFURCATION 

The Hopf Theorem [8, pp. 150–156] assumes the dependence of the system 
on one parameter, but we have three of them. Thus we have to assume two 
parameters to be fixed and one to be varied. The structure of the system (2) allows 
us not to be specific about which two are considered fixed and which one is 
assumed to be variable. Also, we need not choose between the twin equilibrium 
points because they have the same properties. We consider 2P  without loss of 
generality. 

Proposition 3. If  20 << δ  and ( )
δ
δη

8
2

22−
< , the system (2) undergoes 

(twin) Hopf bifurcations of the equilibrium points ( )2,3 0, 1, 1P h= ± − in 

( ) ( )
δη

δηδδ
2

822
222

1
−−−−

=h  and 
( ) ( )

δη
δηδδ

2
822

222

2
−−+−

=h  . 
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Remark: If 1

2 2,hδη >  the Hopf bifurcation is above 1h , and if 22
2 <hδη the 

Hopf bifurcation is below 2h . 
In Fig. 2 the Hopf bifurcations are labeled BB −, and CC −, , respectively. 
The Hopf bifurcations, labeled " B " and " B− ", occur simultaneously on the 

two branches of the equilibrium points at 4488.11 =h . The other two, labeled " C " 
and " C− " occur at 4512.32 =h . In Fig. 2 are also presented the maximal and the 
minimal values of y  on the periodic orbits formed through the Hopf bifurcations 
(small circles). We observe that the size of the stable periodic orbits generated by 
the Hopf bifurcation at 4488.11 =h  increases when h increases, the orbits approach 
until they collide. At 8183.10 ≈h a stable double scroll homoclinic orbit of 1P  is 
formed (Fig. 3a). 

Figure 2 also shows that double scroll periodic orbits are formed for 0hh > . 
They have twin symmetry (which is due, of course, to the symmetry of the system 
(2)). 

When h increases, the size of the double scroll periodic orbit also increases 
and the orbit moves away from the equilibrium point 1P , but also from 2P  and 3P . 
 

a    b  

Fig. 3 – a) Periodic orbits (O2) of the system (2) for δ = 0.2, η = 2, h = 1.8183 collide in the 
equilibrium point 1P . The orbit (O1) is obtained for δ = 0.2, η = 2, h = 1.78;  

b) Hopf curves for various values of h. 

From Proposition 3 it results that the relation that must be fulfilled byδ , η  
and h  in order to have a Hopf bifurcation is ( ) ( ) 012 =−−+ hhh ηδδ . It is the 
limiting equality case of inequality (3). This shows that the equilibrium points 3,2P  
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lose or gain stability if and only if a solution branch passes through a Hopf point, 
i.e. in parameter space the Hopf surface coincides with the surface of marginal 
stability. The Hopf surface has the explicit form  

 ( ) ( ) 012: =−−+ hhhSH ηδδ . (4) 

For fixed values of h  we obtain Hopf curves in the parameters’ plane ( )ηδ , . 
In Fig. 3b are presented the Hopf curves obtained for various values of h . The 
Hopf curves are moving to the right when h  increases and they do not intersect the 
experimental zone for 8.1>h . 

The Hopf curves have an important meaning for the dynamics of the system. 
Practically, they separate zone I (damped oscillations) from zone II, III (periodic 
oscillations) in Fig. 1. They also have influence on the slow-fast dynamics of the 
system.  

4. FAST-SLOW DYNAMICS 

In the case 10 <<<η  the system (2) is a fast-slow system with two fast 
variables, x  and y , and a slow one, z . This dynamics is important for the study of 
our model because the experimental interval of η  is 4.0006.0 <<η . 

Fast-slow systems are characterized by two different time scales, fast and 
slow time. The dynamics consists of fast motions in yx,  directions and slow 
motions in z  direction. This structure yields to nonlinear phenomena as relaxation 
oscillations which are also observed in many physical, chemical, biological [9] or 
medical problems [10]. 

In Fig. 4 are presented typical relaxation oscillations of system (2), for 
0.6, 0.009, 1.5.hη= = =δ  The fast variables x and y remain nearly zero for most 

of the time (the rise time) except for a very short time (the crash time) when they 
suddenly increase and rapidly decrease. These oscillations are also known as 
sawtooth-type oscillations, due to the specific form of the graph of the slow 
variable. Practically, a point spends long time (the rise time) to climb the vertical 
line and has a rapid descending motion (rise time) on the loop of its orbit. 

The mechanism of sawtooth-type oscillation can be understood from the 
study of the fast and slow subsystems. The fast and slow subsystems of (2), 
respectively, are 

( ) 0,,1 ==−−=
•••
zxyxyzx δ and ( )20, 0, .x y z h z y zη

• • •

= = = − −  
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Fig. 4 – Sawtooth orbit 5.1,009.0,6.0 === hηδ . 

The critical manifold (non-uniformly hyperbolic) of the fast subsystem is 
 

( ){ } ( ){ }.,,0,0,1,,0 RzzRyyM ∈∪∈=  
 

The slow motion of ( )0,0,0 z , when 4/1 2
0 δ−<z , is given by  

 
( ) .e)(,0)(,0)( 0

thzhtztytx η−−+===  
 

In this situation )(tz  slowly increases toward h . When )(4/1 2 tz<− δ  we 
approach the bifurcation point ( )1,0,0  on the critical manifold and the motion is 
governed by the fast subsystem.  

The fast motion of ( )0,0,0 z , when 14/1 0
2 <<− zδ , is given by 

( ) ( ) ( ) ( ) ttt hzhtz
z

xxtyeCeCtx η−λλ −+=
−
δ+

=+= e,
1

', 0
0

21
21 , 

where: 
( )

0
2

14 0
2

1 <
−+−−

=
zδδ

λ and 
( )

0
2

14 0
2

2 >
−++−

=
zδδ

λ  and 

21 , CC  are constants depending on 0z . 
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We observe that the values of ( )tx  and ( )ty  increase exponentially 

(rapidly) when t increases. When  ( )ty  is large enough, the values of 
.
z  in system 

(2) become negative, z  decreases and become smaller than 4/1 2δ− . From this 
moment the cycle is repeated: the orbit becomes close to the Oz axis, then it slowly 
moves up along Oz  until ( )ty  is large enough, then it rapidly moves down until 

( ) 4/1 2δ−<tz . 
The oscillations of ( ) ( ) ( )tztytx ,,  are generated by the existence of an 

attractor in the phase space of the system (2). 
For the sawtooth analysis of an orbit we look only at the variation of z  and 

we compare the rise time and the crash time, i.e.  the time necessary to go up from 
the minimum values of z  to the next maximum value (increasing part of the graph 
of z ) and the time necessary to go down from the maximum values of z to the next 
minimum value (decreasing part of the graph of z ). 

An orbit is considered of sawtooth-type if 4
timeCrash

timeRise
> .  

Zones of the parameter plane ( )ηδ ,  where sawtooth oscillations occur are 
presented in Fig. 5 (for various values of h ). 
 

a  

b  
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c    d  

Fig. 5 – Sawtooth zones for 10.1=h  (a), 20.1=h (b), 50.1=h (c) and 80.1=h  (d). 

The sawtooth zone is limited by the Hopf bifurcation curve, which moves to 
the right when h increases. Practically, it leaves the experimental zone at 52.1≈h . 

In Fig. 6 one can observe that the area of the sawtooth zone represents less 
than 40 % from the area of the experimental zone on the parameter plane ( )ηδ ,  
and the larger value is obtained for 5.1≈h . It is also interesting to see that ELM 
oscillations (which are sawtooth-type oscillations) are obtained for small diffusion 
( 025.0<η , less than 50% of the maximal possible value). In the same time δ , the 
dissipation/relaxation of the instability, must be considerable in order to observe 
sawtooth oscillations. This is in agreement with the experimental observation [11]. 

 
Fig. 6  – Area of sawtooth zones for ]2,1[∈h . 
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5. CONCLUSIONS 

The system we studied in this paper is important both from a mathematical 
and a practical point of view. It was introduced in order to explain the quasi-
periodic plasma dynamics observed in fusion experiments in Tokamaks. The 
system has some similar properties with the Lorenz system (dissipativity and 
symmetry with respect to the Oz axis) and it is a fast-slow system. 

In this paper we analyzed the stability of the equilibrium points and we 
studied the some bifurcations of the system (pitchfork and Hopf bifurcations). We 
theoretically explained the fast-slow dynamics of the system and we applied the 
results in specific cases which are important from a practical point of view. A 
saturation of the sawtooth zone (ELM zone) was observed when the input power is 

5.1≈h . This phenomenon is related to the position of Hopf bifurcation curve. 
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REFERENCES 

1. D. Constantinescu, O. Dumbrajs, V. Igochine, K. Lackner, R. Meyer-Spasche, H. Zohm and 
ASDEX Upgrade Team, Physics of Plasmas, 18, 062307 (2011). 

2. E.N. Lorenz, Journal of Atmospheric Sciences, 20, 130–141 (1963). 
3. C. Sparrow, The Lorenz Equations: Bifurcations, Chaos and Strange Attractors, Springer 

Verlag, New York, 1982. 
4. S. Yu, J. Lu, W.K.S. Tang, G. Chen, Chaos, 16, 03316 (2006). 
5. C. Kuehn, Physica D, 240, 1020–1035 (2011). 
6. O. Dumbrajs, V. Igochine, H. Zohm and ASDEX Upgrade, The Open Plasma Physics Journal, 1, 

9–13 (2008). 
7. Yu. A. Kusnetsov, Elements of Applied Bifurcation Theory, Springer Verlag, New-York Inc, 

1998. 
8. J. Guckenheimer, Ph. Holmes, Nonlinear Oscillations, Dynamical Systems and Bifurcations of 

Vector Fields, Springer, Berlin, 1983. 
9. J. Grasman, Asymptotic methods for relaxation oscillations and applications, Applied 

Mathematical Sciences, 63, Springer, New York, 1987.  
10. V.N. Biktashev, International Journal of Bifurcation and Chaos, 13, 3605–3619 (2003). 
11. P.T. Lang et al., Nuclear Fusion, 44, 665–677 (2004). 

 


