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Abstract. In this letter we address the issue of generating appropriate tiny neu-
trino masses within the framework of a particular SU(3)c⊗SU(3)L⊗U(1)X gauge
model by adding three singlet exotic Majorana neutrinos to the ones included in the
three lepton triplet representations. The theoretical device is the general method of
treating gauge models with high symmetries SU(3)c⊗SU(N)L⊗U(1)X proposed
by Cotăescu more than a decade ago. When it is worked-out in the 3-3-1 model it sup-
plies a unique free parameter (a) to be tuned in order to get a realistic mass spectrum
for both the boson and charged-fermion sectors. Its most appealing feature (of special
interest here) is that it contains all the needed ingredients to realize the inverse seesaw
mechanism for neutrinos. The mandatory couplings leading to the lepton number soft
violation in pure Majorana terms result without invoking any element outside the model
(such as GUT scales, as one usually does in the literature). The overall breaking scale
in this particular model can be set around 1 TeV so its phenomenology is quite testable
at present facilities.

Key words: inverse seesaw mechanism, right-handed neutrinos, extensions of the
SM.

1. INTRODUCTION

It is well-known that the Standard Model (SM) ([1] - [3]) - based on the gauge
group SU(3)c ⊗ SU(2)L ⊗U(1)Y undergoing a spontaneous symmetry breaking
(SSB) in its electro-weak sector up to the universal U(1)em - is not a sufficient de-
vice, at least for some stringent issues in the particle physics today. When it comes
to generating neutrino tiny masses [4, 5], the framework of the SM is lacking the
needed ingredients, so one should call for some extra considerations which are less
natural in the context. One of the ways out seems to be the enlargement of the gauge
group of the theory as to include naturally among its fermion representations some
right-handed neutrinos - mandatory elements for some plausible mass terms in the
neutrino sector Yukawa Lagrangian density (Ld) of the theory.

Among such possible extensions of the SM, the so called ”3-3-1” class of mod-
els [6] - [9] - where the new gauge group is SU(3)c⊗SU(3)L⊗U(1)X - has mean-
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2 A straightforward realization of a quasi-inverse seesaw mechanism at TeV scale 129

while established itself as a much suitable candidate. A systematic classification [10]
- [12] and phenomenological study of these models (especially those which don’t in-
clude exotic electric charges [13] - [23]) have been done during the last two decades.
Some of the studies address the neutrino mass issue [24] - [35] with viable results
within the framework of such models.

Here we propose a slightly different approach from the canonical one, in the
sense that we apply the prescriptions of the general method [36] of treating gauge
models with high symmetries. Proposed initially by Cotăescu, it essentially consists
of a general algebraical procedure in which electro-weak gauge models with high
symmetries (SU(N)L⊗U(1)Y ) achieve their SSB in only one step up to the residual
U(1)em by means of a special Higgs mechanism. The scalar sector is organized as
a complex vector space where a real scalar field ϕ is introduced as the norm for the
scalar product among scalar multiplets. It also ensures the orthogonality in the scalar
vector space. Thus, the survival of some unwanted Goldstone bosons is avoided.
This leads to a one-parameter mass spectrum, due to a restricting trace condition
that has to hold throughout. The compatibility of this particular method with the
canonical approach to 3-3-1 models in the literature was proved in a recent paper by
the author [37] where an appealing outcome with only two physical massive Higgses
with non-zero interactions finally emerged. This will be precisely the framework of
our proceedings here. Furthermore, we exploit the realization of a kind of quasi-
inverse seesaw mechanism [38] - [46] in the framework of 3-3-1 gauge models with
3 right-handed neutrinos (νR) included in the fermion triplets and 3 exotic sterile
Majorana singlets (NR) , in which the free parameter (let’s call it a) is tuned in order
to obtain the whole mass spectrum. An apparently unused up to now parameter η0 in
the general method proves itself here as the much needed ”lepton number violating”
coupling to achieve the Majorana mass terms for NR in the neutrino sector.

The letter is divided into 5 sections. It begins with a brief presentation of the
model and its parametrization supplied by the general Cotăescu method (in Sec.2)
and continues with the inverse seesaw mechanism worked out within this framework
(Sec. 3) and the tuning of the parameters (Sec. 4) in order to obtain phenomenolog-
ically viable results for the neutrino masses. Some conclusions are sketched in the
last section (Sec. 5).

2. BRIEF REVIEW OF THE MODEL

The particle content of the 3-3-1 gauge model of interest here is the following:

(c) 2016 RRP 68(No. 1) 128–137 - v.1.1a*2016.3.1



130 Adrian Palcu 3

Lepton families

lαL =

 νcα
να
eα


L

∼ (1,3,−1/3) eαR ∼ (1,1,−1) (1)

Quark families

QiL =

 Di

−di
ui


L

∼ (3,3∗,0) Q3L =

 U3

u3
d3


L

∼ (3,3,+1/3) (2)

diR,d3R ∼ (3,1,−1/3) uiR,u3R ∼ (3,1,+2/3) (3)

U3R ∼ (3,1,+2/3) DiR ∼ (3,1,−1/3) (4)

with i= 1,2.
The above representations ensure the cancellation of all the axial anomalies (by

an interplay between families, although each one remains anomalous by itself). In
this way one prevents the model from compromising its renormalizability by triangle
diagrams. The capital letters are reserved for the exotic quarks (Di, D2 and U3) in
each family. They are heavier than the ordinary quarks known from the SM.

To this fermion content one can add 3 Majorana exotic neutrinosNR∼ (1,1,0)
without the danger of spoiling the renormalizability. The advantage these 3 exotic
neutrinos bring is that they can play a crucial role in realizing the inverse seesaw
mechanism [38] - [46].

Gauge bosons
The gauge bosons of the model are determined by the generators of the electro-

weak su(3) Lie algebra, expressed by the usual Gell-Mann matrices Ta = λa/2 . So,
the Hermitian diagonal generators of the Cartan sub-algebra are

D1 = T3 =
1

2
Diag(1,−1,0) , D2 = T8 =

1

2
√
3

Diag(1,1,−2) . (5)

In this basis the gauge fields are expressed by: A0
µ (corresponding to the Lie algebra

of the group U(1)X ) and Aµ ∈ su(3), that can be put as

Aµ =
1

2


A3
µ+A

8
µ/
√
3

√
2Xµ

√
2Yµ

√
2X∗µ −A3

µ+A
8
µ/
√
3

√
2Wµ

√
2Y ∗µ

√
2W ∗µ −2A8

µ/
√
3

 , (6)
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where
√
2W±µ = A6

µ∓ iA7
µ,
√
2Y ±µ = A4

µ± iA5
µ, and

√
2Xµ = A1

µ± iA2
µ, respec-

tively. One notes that apart from the charged Weinberg bosons (W ) from SM, there
are two new complex boson fields,X (neutral) and Y (charged) - off-diagonal entries
in eq. (6).

The diagonal Hermitian generators will provide us with the neutral gauge bosons
Aemµ , Zµand Z ′µ. Therefore, on the diagonal terms in eq.(6) a generalized Weinberg
transformation (gWt) must be performed in order to consequently separate the mass-
less electromagnetic field from the other two neutral massive fields. One of the two
massive neutral fields is nothing but the Z0-boson of the SM. The details of the gen-
eral procedure with gWt can be found in Ref. [36] and its concrete realization in the
model of interest here in Refs. [19, 26]. In Ref. [19] the neutral currents for both
Zµ and Z ′µ are completely determined, while in Ref. [26] the boson mass spectrum
is calculated.

For the sake of completeness we write down the electric charge operator in
this particular 3-3-1 model when Cotăescu method is involved. It stands simply as:
Qρ = 2√

3
T ρ8 +Y ρ for each representation ρ.

Scalar sector and spontaneous symmetry breaking
In the general method [36], the scalar sector of any SU(N)L⊗U(1)Y electro-

weak gauge model must consist of n Higgs multiplets φ(1), φ(2), ... , φ(n) satisfying
the orthogonal condition φ(i)+φ(j) =ϕ2δij in order to eliminate unwanted Goldstone
bosons that could survive the SSB. Here ϕ ∼ (1,1,0) is a gauge-invariant real field
acting as a norm in the scalar space and n is the dimension of the fundamental irre-
ducible representation of the gauge group. The parameter matrix η=(η0,η1,η2..,ηn)
with the property Trη2 = 1− η20 is a key ingredient of the method: it is introduced
in order to obtain a non-degenerate boson mass spectrum. Obviously, η0,ηi ∈ [0,1).
Then, the Higgs Ld reads:

LH =
1

2
η20∂µϕ∂

µϕ+
1

2

n∑
i=1

η2i

(
Dµφ

(i)
)+(

Dµφ(i)
)
−V (φ(i)) (7)

where Dµφ
(i) = ∂µφ

(i)− i(gAµ+ g′y(i)A0
µ)φ

(i) act as covariant derivatives of the
model. g and g′ are the coupling constants of the groups SU(N)L and U(1)X re-
spectively. Real characters y(i) stand as a kind of hyper-charge of the new theory.

For the particular 3-3-1 model under consideration here the most general choice
of parameters is given by the matrix η2=

(
1−η20

)
Diag

[
1−a, 12 (a− b) ,

1
2 (a+ b)

]
.

It obviously meets the trace condition required by the general method for any a,b ∈
[0,1). After imposing the phenomenological condition M2

Z =M2
W /cos

2 θW (con-
firmed at the SM level) the procedure of diagonalizing the neutral boson mass matrix
[19, 26] reduces to one the number of parameters, so that the parameter matrix reads
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η2 =
(
1−η20

)
Diag

[
1−a, a(1−tan

2 θW )
2 , a 1

2cos2 θW

]
.

With the following content in the scalar sector of the 3-3-1 model of interest
here (and based on the redefinition of the scalar triplets from the general method, as
in the Ref.[37])

ρ=


ρ01

ρ02

ρ−3

 ,χ=


χ0
1

χ0
2

χ−3

∼ (1,3,−1/3) , φ=


φ+1

φ+2

φ03

∼ (1,3,+2/3) , (8)

one can achieve via the SSB the following vacuum expectation values (VEV) in the
unitary gauge:


η1 〈ϕ〉+Hρ

0

0

 ,


0

η2 〈ϕ〉+Hχ

0

 ,


0

0

η3 〈ϕ〉+Hφ

 , (9)

with the overall VEV

〈ϕ〉=
√
µ21η

2
1 +µ

2
2η

2
2 +µ

2
3η

2
3√

2
(
λ1η41 +λ2η

4
2 +λ3η

4
3

)
+λ4η21η

2
2 +λ5η

2
1η

2
3 +λ6η

2
2η

2
3

(10)

resulting from the minimum condition applied to the potential

V = µ21ρ
+ρ−µ22χ+χ−µ23φ+φ

+λ1 (ρ
+ρ)

2
+λ2 (χ

+χ)
2
+λ3 (φ

+φ)
2

+λ4 (ρ
+ρ)(χ+χ)+λ5 (ρ

+ρ)(φ+φ)+λ6 (φ
+φ)(χ+χ)

+λ7 (ρ
+χ)(χ+ρ)+λ8 (ρ

+φ)(φ+ρ)+λ9 (φ
+χ)(χ+φ) .

(11)
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3. QUASI-INVERSE SEESAW MECHANISM

With the above ingredients one can construct the Yukawa Ld allowed by the
gauge symmetry in the 3-3-1 model with right-handed neutrinos. It simply is:

−LY = hφlφeR+hρlρNR+hχlχNR+ 1
2hϕN

c
Rη0ϕNR

+1
2hε

ijk
(
l
)
i
(lc)j φk+h.c.

(12)

where hs are 3×3 complex Yukawa matrices, the lower index indicating the partic-
ular Higgs each one connects with.

It leads straightforwardly to the following mass terms:

−Lmass = hφeLeR 〈φ〉+hρlNR 〈ρ〉+hχlNR 〈χ〉+ 1
2hϕNRN

c
Rη0 〈ϕ〉

+1
2

(
h−hT

)
νLνR 〈φ〉+h.c.

(13)

The Yukawa terms allow one to construct the quasi-inverse seesaw mechanism
by displaying them into the following 9×9 complex matrix:

M =



0 1
2

(
h−hT

)√
1

2cos2 θW
hχ

√
a
2 (1− tan2 θW )

1
2

(
hT −h

)√
1

2cos2 θW
0 hρ

√
1−a

hTχ

√
a
2 (1− tan2 θW ) hTρ

√
1−a hϕη0


〈ϕ〉

(14)
Due to the non-zero hχ this matrix is slightly different from the traditional

inverse seesaw mechanism [38] - [40], but its resulting effects - we prove in the
following - are phenomenologically plausible. However, this kind of seesaw matrix
appears in the literature, see for instance Refs. [41, 42]. This 9× 9 complex matrix
can be displayed as:

M =

 0 mD

mT
D MN

 (15)

with mD =
(

1
2

(
h−hT

)√
1

2cos2 θW
hχ

√
a
2 (1− tan2 θW )

)
a 3× 6 complex

matrix and MN =

(
0 hρ

√
1−a

hρ
√
1−a hϕη0

)
a 6×6 complex matrix acting in the

seesaw formula.
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By diagonalizing the above matrix one gets the physical neutrino matrices as:
M (νL)'−mD

(
M−1N

)
mT
D and M (νR,NR)'MN which yield:

M (νL) ' aη0〈ϕ〉
8(1−a)cos2 θW

(
h−hT

)(
h−1ρ

)T
(hϕ)

(
h−1ρ

)(
hT −h

)
−aη0

√
(1−tan2 θW )〈ϕ〉

4
√

(1−a)cos2 θW

[
(hχ)

(
h−1ρ

)(
hT −h

)
+
(
h−hT

)(
h−1ρ

)T
(hχ)

T
]

(16)

 M (νR) 0

0 M (NR)

=

 hρ
√
(1−a)+ 1

2hϕη0 0

0 −hρ
√

(1−a)+ 1
2hϕη0


(17)

One can enforce here the realistic condition

[
(hχ)

(
h−1ρ

)(
hT −h

)]T
=−(hχ)

(
h−1ρ

)(
hT −h

)
(18)

in order to eliminate the troublesome terms in the left-handed neutrino mass matrix.
This condition can be naturally achieved if one takes into consideration the plausible
identity

hχ = hρ (19)

meaning that the exotic right-handed neutrinos NR couples similarly with νL and
νR respectively. Consequently, one gets the left-handed neutrino mass matrix as the
complex 3×3 matrix:

M (νL)'
aη0 〈ϕ〉

8(1−a)cos2 θW
(
h−hT

)(
h−1ρ

)T
(hϕ)

(
h−1ρ

)(
hT −h

)
(20)

It is evident that it is a pure Majorana mass matrix since M (νL)
T =M (νL)

holds. Assuming that all the coupling matrices in the Yukawa sector are of the same
order of magnitude, say ∼ O(1), one can estimate the order of magnitude of the
individual masses in this matrix as

TrM (νL)'
3aη0 〈ϕ〉

8(1−a)cos2 θW
(21)

The right-handed neutrinos acquire some pseudo-Dirac masses, since finally
one remains withM (νR)

T 6=M (νR) andM (NR)
T 6=M (NR) and hρ dictates their

character.
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4. TUNING THE PARAMETERS

Now one can tune the parameters in this particular model in order to get phe-
nomenologically viable predictions. Obviously, both a, η0 ∈ (0,1). Since η0 is the
parameter responsible with the lepton number violation, one can keep it very small,
say η0 ∼ 10−8−10−9 in order to safely consider that the global U(1)leptonic symme-
try is very softly (quite negligible) violated by the Majorana coupling it introduces.

When comparing the boson mass spectrum in this model - obtained both by
using the general Cotăescu method [26] and the SM calculations [1] - one gets a
scales connection: √(

1−η20
)
a=
〈ϕ〉SM
〈ϕ〉

(22)

It becomes obviously that η0 has no part to play in the breaking scales splitting.
The later is determined quite exclusively by a. If one takes 〈ϕ〉SM ' 246 GeV and
〈ϕ〉 ' 1 TeV then a' 0.06.

With these plausible settings the individual neutrino masses come out in the
subsequent hierarchy: ∑

m(νL)' 1eV (23)∑
m(νR)'

∑
m(NR)' 970GeV (24)

Furthermore, one can enforce some extra flavor symmetries in the lepton sector
in order to dynamically get the appropriate PMNS mixing matrix. Some discrete
groups, such as A4[46, 47], S4[48] or S3[49, 50] can be employed in 3-3-1 models
with no exotic electric charges, in order to accomplish this task, but this exceeds the
scope of this letter.

5. CONCLUSIONS

We have discussed here the possible realization of a quasi-inverse seesaw mech-
anism in the 3-3-1 class of gauge models with ”lepton number violating” exotic Ma-
jorana neutrinos added. The Cotăescu general method of treating gauge models with
high-symmetries is involved and it successfully provides us not only with the one-
parameter mass spectrum but also with the lepton number violating terms needed for
a plausible inverse seesaw mechanism due to the possibility of coupling the ϕ to ex-
otic Majorana neutrinos. To the extent of our knowledge, in low energy models one
finds no such terms to give masses to exotic neutrinos, so that some extra assump-
tions (usually from GUT theories) are invoked. These two characteristics single out
our approach from other recent similar attempts [34, 35]. The details of the mixing
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136 Adrian Palcu 9

in the neutrino sector are closely related to the entries in h, hρ and hϕ but this lies
beyond the scope of this letter and will be presented elsewhere. The framework of
this kind of 3-3-1 models is a very promising one. It recovers all the results of the
SM and in addition exhibits a lot of assets: it requires precisely 3 fermion genera-
tions, its algebraic structure dictates the observed charge quantization, it can predict
a testable Higgs phenomenology and, as we presented here, is suitable for neutrino
phenomenology.
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