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Abstract. A generalized Fisher equation involving a nonlinear term of any order
and time-dependent coefficients is investigated. We present exact analytical solutions
describing periodic and solitary wave solutions using the modified sine-cosine method.
A certain class of exact soliton-like solutions has been found by means of the auxiliary
equation method. The conditions of existence and uniqueness of these solutions are
given. We exploit the temporal variation of the coefficients to study the dynamics of
solitary waves in presence of the linear dispersion effect and arbitrary power nonlinear-
ity. We show numerically that the time-variation of the dependent coefficients provides
a physical way to control the solitary wave profile. These solitary waves are expected
to find practical application in inhomogeneous nonlinear systems that are described by
Fisher-type equation.
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1. INTRODUCTION

Envelope solitary waves propagating in inhomogeneous media have attracted
considerable attention in recent years. Interesting results were particularly presented
in the field of fiber-optic communication systems where the family of nonlinear
Schrödinger equation with distributed coefficients is the basic model equation to de-
scribe the nonlinear wave dynamics [1]-[5]. Compared with the study of solitary
wave dynamics in inhomogeneous fibers, the investigation of propagating waves in
nonlinear media described, for instance, by the sine-Gordon equation, the Fisher
equation, the Fitzhugh-Nagumo equation and many others, has received little atten-
tion. In Ref. [6], parametrically controlling solitary wave dynamics in the modified
Korteweg-de Vries equation through the temporal variations of the distributed coef-
ficients has been described.

A nonlinear solitary wave is an example of a stable wave packet that preserves
its shape during propagation in a nonlinear dispersive medium [7]. The distinction
between solitary wave and soliton solutions is that when any number of solitons
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interact they do not change form, and the only outcome of the interaction is a phase
shift [8]. Solitons appear in many diverse fields such as nonlinear optics, plasma
physics, biophysics, acoustics, and fluid mechanics. These particlelike excitations
are stabilized by a balance of dispersion and nonlinearity [9]. Two different types
of envelope solitons, bright and dark, can propagate in nonlinear dispersive media
[10]. These physical objects have been studied extensively, both theoretically and
experimentally [11]-[30].

The theoretical description of wave propagation in a given nonlinear medium is
based on an analysis of nonlinear evolution equations with constant or variables co-
efficients. Due to the inhomogeneities of media and nonuniformities of boundaries,
the variable-coefficient nonlinear evolution equations can be used to describe the real
physical settings [31]. It is remarked that wave models with varying coefficients pos-
sess richer phenomena than those with constant coefficients. The constant coefficient
nonlinear equation only approximately describe the dynamics of the physical sys-
tem, however, the variable coefficient nonlinear equation can precisely describe the
system’s properties [32]. The finding of their solutions provides fundamental un-
derstanding of complex nonlinear phenomena arising in various dynamical systems.
Furthermore, exact solutions allow one to calculate certain important physical quan-
tities analytically as well as serving as diagnostics for numerical simulations [33].
It should be noted that the study of solitary waves in inhomogeneous systems has a
number of interesting features that extend the results of the simplest case of homo-
geneous systems.

A variety of powerful methods, such as Backlund transformation, the inverse
scattering method, bilinear transformation, the subsidiary ordinary differential equa-
tion method [34, 35], solitary wave ansatz method [36, 37], sine-cosine method
[38, 39], and F-expansion method [40] were used to investigate various nonlinear
dispersive and dissipative problems.

The Fisher’s equation [41]-[44]

ut = uxx+u(1−u) , (1)

describes the process of interaction between diffusion and reaction [45]. Fisher pro-
posed this equation as a model for the propagation of a mutant gene with u(x,t)
denoting the density of advantageous. This equation is encountered in chemical ki-
netics and population dynamics, which includes problems such as nonlinear evolu-
tion of a population in one-dimensional habitual and neutron population in a nuclear
reaction [46, 47]. Quite recently, the applicability of the Fisher equation to bacterial
population dynamics is studied with the help of explicit analytic solutions for the
spatial distribution of a stationary bacterial population under a static mask [48].

In this work, we further generalize this equation by considering the case of
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arbitrary power nonlinearity and time-varying coefficients so that

ut+α(t)ux = β(t)uxx+γ(t)u(1−un) , (2)

where α(t) , β (t), and γ (t) are arbitrary functions of the time variable t, while n
is any positive integer. Here the effect of linear dispersion is taken into account by
the term α(t)ux. The latter can be removed by a suitable change of the coordinate
frame, but here it has been kept explicitly to contrast its effect with the nonlinear and
dispersion terms.

The model (2) describes nonlinear wave propagation in inhomogenous media
governed by the Fisher-type equation. The Fisher equation with variable coefficients
is one of the most important generic models that have captured attention of many
researchers in different fields of physics [49]-[51]. In Ref. [50], the phenomenon
of wavefront jump or ignition ahead of the reaction front for a piecewise constant
reaction rate has been analyzed by using the generalized Fisher equation involving
diffusion transport with a finite velocity and a spatially nonuniform reaction rate.
Besides, the variable coefficient Fisher equation is used to describe nonlinear phe-
nomena such as thermonuclear fusion and hydronium physics, etc. [32]. Notice that
a generalization of Fisher’s equation involving memory effects where the decay time
of the memory function is an exponential function in time is used to study memory
effects in transport [51].

Generally, Eq. (2) is not integrable by the inverse scattering method. It is of
interest to construct exact solutions for this wave equation for a better understanding
of nonlinear phenomena arising in dynamical systems described by this model.

The present paper is concerned with traveling wave solutions of (2). Solitons
and periodic solutions will be determined using the modified sine-cosine method
under various circumstances. We will show that the change of the parameters will
drastically change the solitary wave profile which can exhibit interesting structures.
For completeness, we also find certain soliton-typed explicit solutions by means of
the auxiliary equation method. To our knowledge, the study of the generalized Fisher
equation with time-dependent coefficients has not been widespread. Particularly, the
investigation of solitary wave dynamics in the Fisher-type equation with arbitrary
power nonlinearities and variable coefficients has not been previously presented.

2. TRAVELING WAVE SOLUTIONS

In this section, we construct analytic solutions of the generalized wave equation
(2) using the modified sine-cosine method and the auxiliary equation method, in the
presence of the nonlinear term of any order. The results can therefore be used in
a variety of many types of nonlinearity. The effects of explicit time-dependence of
model parameters will be also discussed.

(c) 2016 RRP 68(No. 1) 65–78 - v.1.1a*2016.3.1



68 Houria Triki, Abdul-Majid Wazwaz 4

2.1. THE SINE-COSINE METHOD

To reach the goal of finding analytically exact solutions of (2), we first use the
modified sine-cosine method which admits the use of the assumptions [39, 52]

u(x,t) = λ(t)cosp (µξ) , ξ = x− c(t)t (3)

and
u(x,t) = λ(t)sinp (µξ) , ξ = x− c(t)t (4)

for some parameters λ(t), µ, and p that are to be determined. Here µ is the wave
number and c(t) is the wave speed.
The assumption (3) gives

ut =
dλ(t)

dt
cosp (µξ)−λ(t)pµ

(
−c(t)− dc(t)

dt
t

)
cosp−1 (µξ)sin(µξ) , (5)

ux =−λ(t)pµcosp−1 (µξ)sin(µξ) , (6)

uxx = λ(t)µ2p(p−1)cosp−2 (µξ)−λ(t)µ2p2 cosp (µξ) , (7)
and the assumption (4) gives

ut =
dλ(t)

dt
sinp (µξ)+λ(t)pµ

(
−c(t)− dc(t)

dt
t

)
sinp−1 (µξ)cos(µξ) , (8)

ux = λ(t)pµsinp−1 (µξ)cos(µξ) , (9)

uxx = λ(t)µ2p(p−1)sinp−2 (µξ)−λ(t)µ2p2 sinp (µξ) , (10)
Substitution of (5)-(7) into the wave equation (2) leads

dλ(t)

dt
cosp (µξ)−λ(t)pµ

(
−c(t)− dc(t)

dt
t

)
cosp−1 (µξ)sin(µξ)

−α(t)λ(t)pµcosp−1 (µξ)sin(µξ)−β(t)λ(t)µ2p(p−1)cosp−2 (µξ)

+β(t)λ(t)µ2p2 cosp (µξ)−γ(t)λ(t)cosp (µξ)+γ(t)λn+1(t)cosp(n+1) (µξ) = 0.

(11)

Equating the exponents and the coefficients of like powers of cosine function in (11)
leads to

p(p−1) 6= 0, (12)

p−2 = p(n+1) , (13)

dλ(t)

dt
+β(t)λ(t)µ2p2−γ(t)λ(t) = 0, (14)

(c) 2016 RRP 68(No. 1) 65–78 - v.1.1a*2016.3.1



5 On soliton dynamics of the generalized Fisher equation 69

−λ(t)pµ
(
−c(t)− dc(t)

dt
t

)
−α(t)λ(t)pµ= 0, (15)

−β(t)λ(t)µ2p(p−1)+γ(t)λn+1(t) = 0, (16)
Solving this system yields

p 6= 0,1, (17)

p=− 2

n
, (18)

λ(t) = λ0 exp

[∫ {
γ (t)− 4µ2

n2
β (t)

}
dt

]
, (19)

c(t) =
1

t

∫
α(t)dt, (20)

λ(t) =

[
2(n+2)µ2β(t)

n2γ(t)

] 1
n

, (21)

where λ0 is an integration constant related to the initial pulse amplitude.
Equating the two values of the wave amplitude from (19) and (21) yields the

constraining relation:

λ0 exp

[∫ {
γ (t)− 4µ2

n2
β (t)

}
dt

]
=

[
2(n+2)µ2β(t)

n2γ(t)

] 1
n

, (22)

which means that the parameters β(t), γ (t) , µ, and λ0 are not independent and the
existing solutions are obtained in the framework of this relationship.

Similar results are also obtained by using the sine method (4). This leads to the
following periodic solutions

u1(x,t) =

{
2(n+2)µ2β(t)

n2γ(t)
sec2

[
µ

(
x−

∫
α(t)dt

)]} 1
n

, (23)

and

u2(x,t) =

{
2(n+2)µ2β(t)

n2γ(t)
csc2

[
µ

(
x−

∫
α(t)dt

)]} 1
n

, (24)

However, if setting µ= iµ1 we obtain the solitons solutions

u3(x,t) =

{
−2(n+2)µ21β(t)

n2γ(t)
sech2

[
µ1

(
x−

∫
α(t)dt

)]} 1
n

, (25)

and

u4(x,t) =

{
−2(n+2)µ21β(t)

n2γ(t)
csch2

[
µ1

(
x−

∫
α(t)dt

)]} 1
n

. (26)
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Fig. 1 – Evolution of the solitary wave solution (25) with parameters as follows: n= 2, µ= 2,
β (t) =−1, γ (t) = 2; (a) α(t) = 4cos(t), (b) α(t) = 0.05.

The above solutions clearly indicate that the pulse amplitude is not constant and
it is affected by the time-varying coefficients β (t) and γ (t), while the pulse velocity
depends only on the linear dispersion coefficient α(t).

Let us now proceed by investigating the dynamics of solitary waves through
the temporal variations of the dependent coefficients α(t) , β (t), and γ (t). In order
to understand the influence of such parameters on the propagating waves, here we
take the bright-type solitary wave solution (25) as an example. We carefully examine
the role of the linear dispersion coefficient α(t) and the quantity β (t)/γ (t) in the
change of the solitary wave profile. We start with the case where α(t) is variant with
respect to the time variable t while β (t)/γ (t) is constant. For a given set of α(t),
one can see in Figs. 1 and 2 that the solitary wave takes different shapes while the
amplitude and width are not modulated by the variable coefficient α(t).

Let us now fix α(t) and consider the case where β (t)/γ (t) is a time-varying
function. Figure 3 presents the evolution plots of the solution (25) for different func-
tions of β (t)/γ (t). We see that the soliton profile present a localized structure in
x− t plane.

By comparing Figs. 1 and 2 with 3, we find that the quantity β (t)/γ (t) has
a stronger influence on the solitary wave propagation than the dispersion coefficient
α(t).

From these results one concludes that, the solitary wave profile can be effec-
tively controlled through the temporal variations of the parameters α and β/γ. We
still do not possess a formal proof of its stability; however, detailed stability analyses
of this solitary wave under some initial perturbations by employing the numerical
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Fig. 2 – Evolution of the solitary wave solution (25) with parameters as follows: n= 2, µ= 1,
β (t) =−1, γ (t) = 2; (a) α(t) = 0.6t2, (b) α(t) = 0.8t.

Fig. 3 – Evolution of the solitary wave solution (25) with parameters as follows: n= 2, µ= 1,
α(t) = 0.1; (a) β (t) = 10−6 sin2(t), γ (t) =−2, (b) β (t) = sech2(t), γ (t) =−2.
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simulation methods are now under investigation.

2.2. THE AUXILIARY EQUATION METHOD

In what follows, making use of the auxiliary differential technique, we obtain
some new soliton-like solutions for the generalized Fisher equation with variable
coefficients (2). Let us first introduce the new variable:

u(x,t) = v
1
n (x,t) , (27)

Substituting (27) into (2) yields an equation for v as

nvvt+nα(t)vvx−β(t)(1−n)v2x−nβ(t)vvxx−n2γ (t)v2+n2γ (t)v3 = 0, (28)

Next, we adopt the ansatz of Zhao et al. [53] of the form

v(t) = f(t)+g1(t)ϕ(ξ)+g2(t)ϕ
2 (ξ) , ξ = p(t)x+ q(t), (29)

where f(t), g1(t), g2(t), p(t), and q(t) are all unknown functions of t. We let ϕ(ξ)
satisfies the auxiliary ordinary differential equation [54]:(

dϕ

dξ

)2

= q4ϕ
4+ q3ϕ

3+ q2ϕ
2, (30)

where q2, q3, and q4 are constants. Importantly, the choice of the ansatz solution (29)
is dictated by considering the balance between the terms vvxx and v3 in (28).

Substituting (29) into (2) along with (30), collecting the coefficients of ϕi,
where i = 0, ..,6, and ϕjϕ′ to zero, where j = 0,1,2,3, and setting them to zero we
get the following set of equations:

nf
{
ft−γnf +γnf2

}
= 0, (31)

n(ftg1+fg1t)−βnq2fg1p2+γn2
(
3f2g1−2fg1

)
= 0, (32)

n(ftg2+fg2t+g1g1t)−β (1−n)q2g21p2

−βnp2
{
3

2
q3fg1+4q2fg2+ q2g

2
1

}
+γn2

(
3f2g2+3fg21−g21−2fg2

)
= 0,

(33)

n(g1g2t+g2g1t)−βp2 (1−n)
(
q3g

2
1 +4q2g1g2

)
−βnp2

{
2q4fg1+

3

2
q3g

2
1 +5q3fg2+5q2g1g2

}
+γn2

(
g31 +6fg1g2−2g1g2

)
= 0,

(34)
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ng2g2t−βp2 (1−n)
(
4q2g

2
2 +4q3g1g2+ q4g

2
1

)
−βnp2

{
2q4g

2
1 +

13

2
q3g1g2+6q4fg2+4q2g

2
2

}
+γn2

(
3g21g2+3fg22−g22

)
= 0,

(35)

−4βp2 (1−n)
(
q3g

2
2 + q4g1g2

)
−βnp2

(
8q4g1g2+5q3g

2
2

)
+3γn2g1g

2
2 = 0, (36)

−4β (1−n)q4g22p2−6βnp2q4g
2
2 +γn

2g32 = 0, (37)

nfg1 [ptx+ qt+αp] = 0, (38)

n
(
2fg2+g

2
1

)
[ptx+ qt+αp] = 0, (39)

3ng1g2 [ptx+ qt+αp] = 0, (40)

2ng22 [ptx+ qt+αp] = 0. (41)
where the indice t represent the derivative with respect to the time variable.
By solving the above algebraic equations we obtain explicit expressions of the wave
parameters as

f(t) =
en

∫
γ(t)dt

1+en
∫
γ(t)dt

, (42)

g1(t) =
q3(n+2)en

∫
γ(t)dt

(
1+en

∫
γ(t)dt

)−1
nq2+ q3(n+2)

(
1+en

∫
γ(t)dt

) , (43)

g2(t) =
8q24(n+2)en

∫
γ(t)dt

(
1+en

∫
γ(t)dt

)−1
16nq2q4− (4−n)q23 +8q24(n+2)

(
1+en

∫
γ(t)dt

) , (44)

p(t) =

√
γn2

2q4β (n+2)
g2, (45)

and

q(t) =

√
γn2

2q4β (n+2)
×
∫
dtQ(t)−

∫
dtα(t)p(t), (46)
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where the functionQ(t) can be easily expressed in terms of the functions f(t), g1(t),
and g2(t).

Also, we are left with a constraining relation

g1(t) =
q3
2q4

g2(t). (47)

Using the results for g1(t) and g2(t), the constraining relation yields

(4−n)q23 = 12nq2q4+4q4(n+2)(2q4− q3)
(
1+en

∫
γ(t)dt

)
. (48)

Regarding the auxiliary ordinary differential equation (30) we can see that it pos-
sesses the following exact solutions [54]:
(i) When q2 > 0:

ϕ(ξ)≡ ϕ1 (ξ) =
−q2q3sech2

(
±
√
q2
2 ξ
)

q23− q2q4
(
1− tanh

(
±
√
q2
2 ξ
))2 , (49)

(ii) When q23−4q2q4 > 0, q2 > 0:

ϕ(ξ)≡ ϕ2 (ξ) =
2q2sech

(√
q2ξ
)√

q23−4q2q4− q3sech
(√
q2ξ
) , (50)

Substituting the expressions (42)-(46) into (29), inserting the resulting equation
into (27), and considering the explicit solutions (49) and (50), we obtain the following
new soliton-like solutions for (2):
Type 1: Taking the solution (49), we get a first new soliton-like solution for (2):

u=

 en
∫
γ(t)dt

1+en
∫
γ(t)dt

+
q3(n+2)en

∫
γ(t)dt

(
1+en

∫
γ(t)dt

)−1
nq2+ q3(n+2)

(
1+en

∫
γ(t)dt

) ϕ1 (ξ)

+
8q24(n+2)en

∫
γ(t)dt

(
1+en

∫
γ(t)dt

)−1
16nq2q4− (4−n)q23 +8q24(n+2)

(
1+en

∫
γ(t)dt

) [ϕ1 (ξ)]
2


1
n

,

(51)

which exist provided that q2 > 0 and n is any positive integer.

Type 2: Choosing the solution (50), we obtain another new soliton-like solution for
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(2):

u=

 en
∫
γ(t)dt

1+en
∫
γ(t)dt

+
q3(n+2)en

∫
γ(t)dt

(
1+en

∫
γ(t)dt

)−1
nq2+ q3(n+2)

(
1+en

∫
γ(t)dt

) ϕ2 (ξ)

+
8q24(n+2)en

∫
γ(t)dt

(
1+en

∫
γ(t)dt

)−1
16nq2q4− (4−n)q23 +8q24(n+2)

(
1+en

∫
γ(t)dt

) [ϕ2 (ξ)]
2


1
n

,

(52)

which exist provided that q23−4q2q4 > 0, q2 > 0 and n is any positive integer.

3. CONCLUSION

The modified sine-cosine method is employed to investigate a generalized Fisher
equation with a nonlinear term of any order and variable coefficients. Exact solitons
and periodic wave solutions were determined. Conditions for the existence of these
solutions have been reported. The auxiliary differential equation technique is also
used to obtain some new soliton-like solutions for the model. Numerical experi-
ments with various functional forms for the variable coefficients have shown that the
soliton’s shape can be effectively controlled through the temporal variations of these
parameters. In particular, new and interesting solitary wave profiles are obtained and
shown to depend on the varying coefficients that must be appropriately chosen. The
solutions can effectively be used to investigate related nonlinear physical problems
where this equation arises.
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12. Houria Triki, Faiçal Azzouzi, Philippe Grelu, Multipole solitary wave solutions of the higher-order
nonlinear Schrödinger equation with quintic non-Kerr terms, Opt. Commun. 309, 71 (2013).

13. D. Mihalache, Linear and nonlinear light bullets: Recent theoretical and experimental studies,
Rom. J. Phys. 57, 352 (2012).

14. P. Razborova, L. Moraru, and A. Biswas, Perturbation of dispersive shallow water waves with
Rosenau-KdV-RLW equation and power law nonlinearity, Rom. J. Phys. 59, 658 (2014).

15. H. Triki, Solitons and periodic solutions to the dissipation-modified KdV equation with time-
dependent coefficients, Rom. J. Phys. 59, 421 (2014).

16. A. Jafarian et al., Analytical approximate solutions of the Zakharov–Kuznetsov equations, Rom.
Rep. Phys. 66, 296 (2014).

17. H. Triki, Z. Jovanoski, and A. Biswas, Dynamics of two-layered shallow water waves with coupled
KdV equations, Rom. Rep. Phys. 66, 251 (2014).

18. Zhengping Yang and Wei-Ping Zhong, Analytical solutions to Sine–Gordon equation with variable
coefficient, Rom. Rep. Phys. 66, 262 (2014).

19. Lina Zhang and Aiyong Chen, Exact loop solitons, cuspons, compactons and smooth solitons for
the Boussinesq-like B(2,2) equation, Proc. Romanian Acad. A 15, 11 (2014).

20. A. Biswas et al., Conservation laws of coupled Klein–Gordon equations with cubic and power law
nonlinearities, Proc. Romanian Acad. A 15, 123 (2014).

21. A.M. Wazwaz and A. Ebaid, A Study on couplings of the fifth-order integrable Sawada–Kotera
and Lax equations, Rom. J. Phys. 59, 454 (2014).

22. A.M. Wazwaz, Multiple kink solutions for the (2+1)–dimensional integrable Gardner equation,
Proc. Romanian Acad. A 15, 241 (2014).

23. D. Mihalache, Localized optical structures: An overview of recent theoretical and experimental
developments, Proc. Romanian Acad. A 16, 62 (2015).

24. D. Mihalache, Multidimensional localized structures in optics and Bose-Einstein condensates: A
selection of recent studies, Rom. J. Phys. 59, 295 (2014).

25. D.J. Frantzeskakis, H. Leblond, and D. Mihalache, Nonlinear optics of intense few-cycle pulses:
An overview of recent theoretical and experimental developments, Rom. J. Phys. 59, 767 (2014).

26. V.S. Bagnato, D.J. Frantzeskakis, P.G. Kevrekidis, B.A. Malomed, and D. Mihalache, Bose-
Einstein condensation: Twenty years after, Rom. Rep. Phys. 67, 5 (2015).

(c) 2016 RRP 68(No. 1) 65–78 - v.1.1a*2016.3.1



13 On soliton dynamics of the generalized Fisher equation 77

27. H. Triki et al., Solitons and other solutions to long-wave short-wave interaction equation, Rom. J.
Phys. 60, 72 (2015).

28. A.M. Wazwaz, Solving Schlomilch’s integral equation by the regularization-Adomian methods,
Rom. J. Phys. 60, 56 (2015).

29. A.M. Wazwaz, New (3+1)-dimensional nonlinear evolution equations with Burgers and Sharma–
Tasso–Oliver equations constituting the main parts, Proc. Romanian Acad. A 16, 32 (2015).

30. H. Leblond, H. Triki, and D. Mihalache, Derivation of a coupled system of Korteweg-de Vries
equations describing ultrashort soliton propagation in quadratic media by using a general Hamil-
tonian for multilevel atoms, Phys. Rev. A 85, 053826 (2012).

31. Xian Yu, Yi-Tian Gao, Zhi-Yuan Sun, and Ying Liu, N-soliton solutions, Bäcklund transformation
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