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Abstract. This article presents the use of Excel spreadsheets in the process of 

teaching-learning of damped harmonic oscillations. The frictional force was 

considered to be linearly proportional with the velocity of the oscillator. Under these 

conditions, a didactic tool is described, made with the help of interactive spreadsheets 

and highlighting the under-damping oscillations. The parameters characteristic for the 

damped oscillatory motion have been calculated with the input data, while the law of 

motion and the kinetic, potential and total energy according to displacement and time 

have been graphically rendered. Also, the graph for the oscillator motion in the phase 

space has been drawn. By exploring the graphic facilities of the spreadsheet we can 

demonstrate how the motion of the oscillator is simulated both in the ñpotential holeò 

and in the phase space. By making the resistance coefficient equal to zero, we obtain 

the particular case of the undamped oscillator and the preservation of the total 

mechanical energy is graphically highlighted. If the presented tool is used in the 

classroom, students will be able to grasp aspects connected to the energy dissipation 

of the damped oscillator and clarify certain links between concepts specific to the 

harmonic oscillatory motion. By reorganizing spreadsheets, the tool can be adapted so 

that it encompasses the initial conditions in the input data and considers the over-

damping oscillations. 
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1. INTRODUCTION  

For a wide range of problems of classical Physics and quantum Physics, the 

harmonic oscillator can represent an exact or approximate model. Therefore, the 

study of this system is of particular importance for Physics. The mechanical 

harmonic oscillations can be described together with the oscillating electrical 

circuits or the energy states of quantum systems. Thus, the development of 

interactive didactic tools for the teaching and learning harmonic oscillations proves 

to be beneficial for any introductory course in Physics. 
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The literature offers a variety of articles on study of the harmonic oscillator 
[1ï3]. Part of the work devoted to this topic approaches oscillations through the use 
of Excel spreadsheets. Excel has the advantage that is accessible to a wider 
audience than applications written in other programs [4]. Other facilities of this 
program have been presented by authors in their previous papers [5, 6]. It has been 
shown that the development of interactive computing modules with graphics and 
animations can integrate mathematical concepts in different areas. Consequently, 
the spreadsheet was used to interpret the solutions for the differential equation of 
motion of the harmonic oscillator based on different initial conditions [7]. Using 
the acceleration sensor from the mobile phone and the associated application 
ñAccelerometer Monitorò for Android has shown the way in which the data from 
experiments with mechanical oscillations can be acquired and processed [8]. 
Studentsô analysis of the pendulum motion with the help of a spreadsheet has 
proven that they can reach a more firm understanding of mechanical concepts [9]. 
Three spreadsheet models have been comparatively presented for the motion of the 
gravitational pendulum. For each model there was graphically presented the time 
dependence of the pendulum angle to the vertical and the formula to calculate the 
oscillation period was deduced. It has also been graphically rendered the error in 
the calculation of the gravitational acceleration depending on the angle amplitude 
starting from the oscillation period of the pendulum [10]. It was developed a model 
to describe the motion of one-dimensional oscillator of variable mass [11].  

Differential equations were investigated for patterns of vibration with dry 
friction examples of the harmonic oscillator [12]. The nonlinear equation was also 
discussed for the motion of a body with a given mass attached to an elastic spring 
[13]. The nonlinear regime of the simple gravitational pendulum was treated by 
presenting approximate methods for calculating the oscillation period or for the 
analysis of the solutions for the equation of motion [14, 15]. There was also a 
description of the simulation for the system with two harmonic oscillators coupled 
with the aid of the educational math software GeoGebra that allows the 
simultaneous operation with algebraic objects and graphic representations. By 
performing the application in the classroom, students were engaged in the 
construction of virtual, dynamic and interactive models for the oscillatory 
phenomena studied [16]. There was presented a tool developed with interactive 
Excel spreadsheets to simulate the composition of perpendicular harmonic 
oscillations with the same frequency. Changing the time moment in the input data 
allows the step-by-step visualization of the oscillator motion on the trajectory [17]. 
For perpendicular oscillation of different frequencies animations with Lissajoux 
figures were made with the help of spreadsheets [18]. Also with the help of 
spreadsheets, there was created a simulation model correlated with the chart of the 
law of motion for the damped harmonic oscillator [19]. Moreover, for the damped 
oscillations, we have the exact analytic form of the function energy-displacement 
with explanations of the successive oscillation amplitudes [20]. The same issue was 
approached by the introduction of the function Lambert W, formulating 
conclusions regarding the energy dissipation of the oscillator. Numerical examples 
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with graphic representations have rendered the case of the quadratic damping and 
that of the linear damping [21]. For the quantic harmonic oscillator, an Excel file 
was generated for the calculation and graphic representation of the wave functions 
and the probability densities. The structure of the file was concretely used as a 
calculation model for the vibration motion of the diatomic molecule of HCl [22].  

This article presents an Excel tool with which we can calculate various 
measures characteristic to the oscillatory motion and visualize certain dependences 
between measures. The under-damping regime is considered when the frictional 
force linearly depends on the oscillator velocity. This model can be applied to an 
elastic pendulum or a gravitational pendulum in a viscous medium. The graphic 
facilities of the Excel spreadsheet are mainly used to highlight aspects connected to 
the energy of the oscillator. In particular, making the resistance coefficient equal to 
zero, we obtain the results for the undamped harmonic oscillator. We have drawn 
the graphs depicting the law of motion of the oscillator and dependences on 
displacement and on time of the kinetic, potential and total energy. The energy-
displacement graph was obtained without analytically explaining the energy as a 
function of displacement. For this there were explored the possibilities for handling 
the data from Excel tables. The energy-displacement graph was correlated with 
velocity-displacement graph of the phase space. By changing the time moment in 
the input data we can follow the motion of the oscillator in the potential hole and in 
the phase space.  

2. ORGANIZA TION OF SPREADSHEETS 

The structure of the tool is similar to that of other tools described by the 
authors, exploring the facilities of Excel spreadsheets in the process of teaching-
learning of Physics [6, 17]. The main spreadsheet contains the sections ñInput 
Dataò and ñResultsò, each of them being divided into several sub-sections, plus the 
graph area. In the first section we introduce the characteristics of the harmonic 
oscillation and a time moment at which we calculate and graphically visualize 
some physical measures for the second section. In the second section we calculate 
the parameters of the damping and the measures specified at the moment of time 
introduced in the input data. 

The measures introduced in the section ñInput Dataò are: the mass of the 
oscillator, m, in cell B4, the resistance coefficient, r, in cell B5, the initial 
amplitude, A0, in cell B6, the undamped period, T0, in cell B7, the starting phase 

angle, j0, in cell B8. The moment of time, t, is introduced in cell B10. In the first 
subsection of the ñResultsò section we calculate the period, T, in cell B13 and the 
total initial energy, E0, in cell B14. In the second subsection, entitled ñInitial 
Conditionsò, we calculate the initial displacement, x0, in cell B16 and the initial 
velocity, v0, in cell B17. In the third subsection, entitled ñDampingò, we calculate 
the logarithmic decrement, D, in cell B19, the half time, T1/2, in cell B20 and the 

time constant, t, in cell B21. In the fourth subsection we calculate, for the time 
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moment, t, the displacement, x, in cell B23, the velocity, v, in cell B24, the kinetic 
energy, Ec, in cell B25, the potential energy, Ep, in cell B26 and the total energy, E, 
in cell B27. The measures that appear in the two sections are expressed in S.I. 
units. 

 

Fig. 1 ï Main spreadsheet with the displacement-time graph of the under-damping oscillator.  

The colored versions can be accessed at http://www.infim.ro/rrp/. 

 

Fig. 2 ï The energy-displacement graphs of the under-damping oscillator for two values of the 

resistance coefficient: a) r = 1.60 kg/s; b) r = 3.20 kg/s. The colored versions can be accessed  

at http://www.infim.ro/rrp/. 

http://www.infim.ro/rrp/
http://www.infim.ro/rrp/
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In order to do the calculations in Excel we use the following cell names: 

ñMassò for cell B4, ñCoefficient_rò for cell B5, ñAmplitude_0ò for cell B6, 

ñPeriod_0ò for cell B7, ñPhase_0ò for cell B8, ñTimeò for cell B10, ñPeriod_Pò for 

cell B13, ñEnergy_0ò for cell B14, ñDisplacement_0ò for cell B16, ñVelocity_0ò 

for cell B17. 

We will further exemplify the calculations done in the cells from the main 

spreadsheet rendered in Fig. 1. For this, first we calculate the undamped angular 

frequency, w0, the damping factor, b, and angular frequency, w, with the help of the 

relations presented in the literature [23] and transcribed in Excel. Thus, in the 

secondary sheet entitled ñAnnex_Calculationsò, taking into account the input data, 

we write the following Excel formulas in three adjacent cells: ñ=2*PI()/Period_0ò 

to calculate w0, ñ=Coefficient_r/(2*Mass)ò to calculate b and 

ñ=IF(Factor_b<Frequency_0;SQRT(Frequency_0^2-Factor_b^2);ñNOò)ò to calculate 

w. The cells in which we calculate w0, b and w have been entitled ñFrequency_0ò, 

ñFactor_bò and ñFrequency_Pò. The period T, in cell B13 of the main spreadsheet 

is calculated with the Excel formula ñ=IF(Factor_b<Frequency_0;(2*PI())/ 

Frequency_P; ñNOò)ò. 

The displacement of the oscillator at the moment t is calculated according to 

the relation [23, 24]: 

 . (1) 

The transcription in Excel of formula (1) in cell B23 becomes: 

ñ=IF(Factor_b<Frequency_0;Amplitude_0*EXP(-

Factor_b*Time)*COS(Frequency_P*Time+RADIANS(Phase_0));ñNOò)ò. 

We have used the logical function IF because in the case in which the input 

data lead to a value of the damping factor higher than the undamped angular 

frequency the message ñNOò is displayed. In this case the limits of the under-

damping regime are exceeded. To calculate the velocity of the oscillator in cell B24 

we derive relation (1) according to time and then we transcribe the result in Excel. 

The initial displacement, in cell B16, is obtained by making t = 0 in relation (1) and 

transcribing the result in Excel. Analogously, we calculate the initial velocity in 

cell B17 starting from the expression of the velocity deduced at any given time 

moment. The calculation of the measures D, T1/2 and t in cells B19, B20 and B21 is 

performed according to the measures b and T following a similar procedure. 

To calculate the kinetic energy, Ec, and the potential energy, Ep, in cells B25 

and B26 we transcribe in Excel the relations known in the literature [24ï26]. For 

this, we take into account the values of the oscillator mass and of the undamped 

period from the input data, as well as the values of the velocity and displacement 

calculated in cells B23 and B24. The value of the total energy, E, from cell B27 is 
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calculated as the sum of the values of the kinetic and potential energy from cells 

B25 and B26. 

 

Fig. 3 ï The energy-displacement graphs of the under-damping oscillator for two values of the 

resistance coefficient: a) r = 1.60 kg/s; b) r = 3.20 kg/s. The colored versions can be accessed at 

http://www.infim.ro/rrp/. 

To calculate the kinetic energy, Ec, and the potential energy, Ep, in cells B25 

and B26 we transcribe in Excel the relations known in the literature [24ï26]. For 

this, we take into account the values of the oscillator mass and of the undamped 

period from the input data, as well as the values of the velocity and displacement 

calculated in cells B23 and B24. The value of the total energy, E, from cell B27 is 

calculated as the sum of the values of the kinetic and potential energy from cells 

B25 and B26.  

Figure 1 renders the graph for the law of motion. The curve traced in red 

represents the displacement in relation to time. This curve is modulated by the 

curves colored in blue which represent the exponential decrease in time of the 

oscillation amplitude.  

Figure 2 renders the dependences of the kinetic, potential and total energy on 

the displacement of the oscillator for two values of the resistance coefficient r. In 

the left panel we considered r = 1.60 kg/s, while in the right panel r = 3.20 kg/s. 

The other input data are in accordance with Fig. 1. By modifying the value of the 

http://www.infim.ro/rrp/
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time moment in cell B10 we can trace the position of the oscillator in the energy-

displacement graph on the motion axis through the black dot. Also, we can notice 

the motion of the dots associated to the position on the curves of the kinetic, 

potential and total energy. In the respective figure we rendered the position of the 

oscillator at t = 0.10 s. 

 

Fig. 4 ï The energy of the oscillator in column and pie charts at a moment of time specified in the 

input data. The colored versions can be accessed at http://www.infim.ro/rrp/. 

The dependence of the kinetic energy on displacement is represented by the 

family of parabolas opening down and colored in blue. These parabolas are 

positioned asymmetrically to the ordinate axis.  Thus, the maximum values of the 

kinetic energy are placed on each side of the equilibrium position. As these 

maximum values decrease, in correspondence with the increasing time values, the 

asymmetry of the curves is gradually reduced. For t­¤, the curve of the kinetic 

energy tends towards zero in the equilibrium point. Theoretically, we have an 

infinite number of parabolas, but on the graph the number of curves is limited by 

the maximum value of the time moment from the source table of the graph. 

The dependence of the potential energy on displacement is represented by the 

family of parabolas opening up and colored in green. The parabolas of the potential 

energy have the same minimum, Epmin= 0, in x = 0. Due to the symmetry to the axis 

of the ordinate, these parabolas overlap and we observe, on the graph, only the 

initial branches of different heights, on each side of the equilibrium position. The 

other branches, placed over the initial branches, have smaller and smaller heights 

so that, for t­¤, the curve of the potential energy tends towards zero in the 

equilibrium point. 

http://www.infim.ro/rrp/
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Fig. 5 ï The particular case r = 0: the energy graphs of the undamped harmonic oscillator.  

The colored versions can be accessed at http://www.infim.ro/rrp/. 

The total energy is represented by the red curve with the branches supported 

on the curves of the potential energy. The points of support on the curves of the 

potential energy, projected on the motion axis, represent the successive extreme 

points of damped oscillations. The branches of the total energy curves narrow with 

the oscillator motion so that, for t­¤, the total energy tends towards zero. Also, 

the consecutive branches of the total energy curves are closing in as the energy 

decreases. The curve of the total energy is tangent at the curves of the kinetic 

energy in point x = 0. In this point, the total energy is equal to the kinetic energy 

because the potential energy is equal to zero. It can be observed that the branches 

of the total energy curves are all the more open as the resistance coefficient r is 

bigger.  

Through the graphics rendered, Fig. 2 shows how the potential hole of the 

damped oscillator narrows with the oscillator motion around the equilibrium 

position. When time tends towards infinite, the potential hole is reduced to zero. 

The limits of the ñinitial potential holeôô have been represented on the graph by the 

thick straight line segments colored in brown. Vertical segments have been built ï 

ñthe walls of the holeò ï at x = °A0 and the horizontal segment corresponding to the 

value E0. The segment traced in a brown dotted line highlights the initial conditions 

on the energy-displacement graph. Thus, the bold points on this segment show the 

displacement on the motion axis and the values for the kinetic, potential and total 

energy on the curves of the three measures at the moment t = 0. 

http://www.infim.ro/rrp/
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Fig. 6 ï The motion of the under-damping oscillator in the phase space for two values  

of the resistance coefficient r: a) r = 1.60 kg/s; b) r = 3.20 kg/s. The colored versions can be accessed  

at http://www.infim.ro/rrp/. 

Figure 3 renders the time dependences of the kinetic, potential and total 

energy for the under-damping oscillator. We have utilized the input data from 

Fig. 1. The curve for the kinetic energy is rendered in blue, the curve for the 

potential energy in green and the curve for the total energy in red. The curve of the 

total energy represents the envelope of the kinetic and potential energy curves. The 

dotted curve colored in brown represents the dependence of the total energy on 

time according to the relation: 

 E(t) = E0 e
ï2bt. (2) 

Relation (2) is obtained in the conditions in which we neglect the variation of 

the oscillation amplitude in a period. In this case the energy decreases 

exponentially in time with a damping coefficient of 2b = r/m [23]. It can be 

observed that with the growth of the time values, the curve described by equation 

(2) closes in on the total energy curve so that, for t­¤, the two curves coincide. As 

the resistance coefficient decreases in the input data, it can be verified how the two 

curves come closer and closer to each other until they overlap.  

Figure 4 presents the energy of the oscillator at the moment of time t, fixed in 

the input data, highlighting the comparison between the values. The left panel 

renders, in a column chart, the values of the kinetic energy, Ec, potential energy, Ep, 

and total energy, E, and total initial energy, E0. The right panel renders, in a pie 

chart, the values of the kinetic and potential energy as percentages of the total 

energy. We have considered t = 0.10 s as in Fig. 1. 

http://www.infim.ro/rrp/
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The energy graphs in Fig. 5 result from making the resistance coefficient, r, 

equal to zero in the input data. In the left panel of the figure we have rendered the 

energy-displacement graph and in the right panel the energy-time graph. It can be 

observed that we obtained the energy graphs for the undamped harmonic linear 

oscillator. The graphs in Fig. 5 highlight the preservation of the total mechanical 

energy, unlike the graphs from Fig. 2 and Fig. 3 highlighting the dissipation of the 

energy in the presence of the frictional force. 

 

Fig. 7 ï Main spreadsheet with the graph of the oscillator motion in the phase space without damping. 

The colored versions can be accessed at http://www.infim.ro/rrp/. 

An efficient way to describe the evolution of a physical system is to use the 

phase space. That is why we have drawn the graph representing the dependence of 

the velocity on the displacement of the oscillator. Figure 6 renders the velocity-

displacement graph for the under-damping oscillator for two values of the 

resistance coefficient. It is verified that the trajectory in the phase space is a spiral 

which narrows asymptotically towards the equilibrium point x = 0. The bigger the 

resistance coefficient, the quicker the spiral narrows towards the equilibrium point. 

This aspect is observed by comparing the two graphs velocity-displacement in 

Fig. 6, in the left panel for r = 1.60 kg/s, and in the right panel for r = 3.20 kg/s. 

The starting phase is marked on the graph by the black dot at the end of the spiral. 

The state of the oscillator at the moment t has been marked by the blue dot on the 

velocity-displacement curve. We have considered the input data from Fig. 1. By 

modifying the value of t, in cell B10 of the main spreadsheet, we can trace the 

http://www.infim.ro/rrp/
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evolution of the oscillator through time by the motion of the blue dot on the 

velocity-displacement curve.  

The graphs from Fig. 6 are correlated with the energy-displacement graphs 

from Fig. 2. With the growth of the damping, a spiral with a bigger ñstepò in the 

velocity-displacement graph from Fig. 6 is associated to a total energy curve with 

the steeper branches in the energy graph in Fig. 2. With the help of the graphs from 

Fig. 2 and Fig. 6 we can trace, at any time, the correspondence between the 

position of the oscillator in the ñpotential holeò and the position of the oscillator in 

the phase space.  

By keeping the input data from Fig. 1, but making the resistance coefficient 

equal to zero in cell B5 the velocity-displacement graph in Fig. 7 results. The 

elliptic trajectory of the undamped harmonic oscillator in the phase space has been 

obtained. We have rendered in Fig. 7 the entire spreadsheet in order to observe the 

other changes in the cells with results. By modifying the input data, it can be 

verified that with the growth of the oscillator energy, the surface delimited by the 

elliptic trajectory in the phase space increases. It can be observed the change in the 

value of the initial velocity in cell B17 as well as in the velocity at the moment  

t = 0.10 s, in cell B24. Also, the change in the values of the kinetic, potential and 

total energy in cells B25, B26 and B27 can be observed. The Excel formulas 

written in the ñResultsò section lead to the appearance of the value zero in cell B19 

and of the message ñNOò in cells B20, B21 in which the measures D, respectively 

T1/2 and t are calculated. 

 

Fig. 8 ï The partial presentation of the source table for the graph of the law of motion  

and for the energy-displacement, energy-time graphs. The colored versions can be accessed  

at http://www.infim.ro/rrp/. 

The velocity-displacement graph is useful for the interpretation of the 

significance of the oscillation phase angle, in particular of the starting phase angle 

j0. Thus, it is verified that the starting phase angle represents the angle between the 

displacement axis and the straight line connecting the origin of the system of 

coordinates with the point associated with the initial state. In particular, for r = 0, 

putting j0 = 0 in cell B8, the point associated to the initial state is placed on the 

http://www.infim.ro/rrp/
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displacement axis at x0 = 0.20 m, and if we take j0 = 90̄ , it is placed on the 

velocity axis at v0 = ï1.26 m/s. 

For the graph of the law of motion and the energy graphs, energy-

displacement, respectively energy-time, a single source table is used that is placed 

in a secondary spreadsheet. The drawing of this table, partially rendered in Fig.8, 

has been done in accordance with a procedure similar to that used by the authors in 

other papers [6, 17]. In column B there are generated the values of the moments of 

time, t, with the help of an increasing number, n, with a one-unit step in column A 

and a time quantum equal to the 100
th
 part of the oscillation period. In column C 

we calculated the values of the displacement, x, and in columns D and E the values 

of the variable amplitude, A(t) = A0e
-bt

, respectively, Aǋ(t) = ïA0e
ïbt

, according to 

the time values from column B. Also according to the time values from column B 

we calculated the values of the velocity, v, in column F. In column G we calculated 

the values of the kinetic energy, Ec, according to the values of the velocity from 

column F. In column H we calculated the values of the potential energy, Ep, 

according to the values of the displacement from column C. In column I we 

calculated the values of the total energy, E, by adding up the values of the kinetic 

and potential energy from columns G, respectively H. In column J we calculated 

the values of the total energy, Eô, according to relation (2), using the values of the 

moments of time from column B. The domain of values for the graph of the law of 

motion is determined by columns B, C, D and E and for the energy-time graph by 

columns B, G, H, I and J. 400 lines have been used for both the law of motion 

graph and for the energy-time graph. The number of lines has been settled so that 

the maximum value of the time moment in column B is 4T, where T is the 

oscillation period. The domain of values for the energy-displacement graph is 

determined by columns C, G, H, I, plus supplementary columns from K to S to 

mark the particular elements. In this case, the number of lines is correspondingly 

extended through the association with supplementary columns. An example of a 

particular element is represented by the limits of the ñinitial potential holeò. For 

graphs in Fig. 4 and Fig. 6 two more source tables have been drawn, placed in 

separate spreadsheets.  

Any of the presented graphs can be placed next to the input data using the 

option ñFreeze panelò, having thus the possibility of tracking the feedback to the 

change in each and every parameter in the input data. 

3. CONCLUSIONS 

There are various approaches on how to provide training and development of 

theoretically acquired knowledge in Physics. A new way of the teaching-learning 

strategy by using the spreadsheets approach was presented in this article. 
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With the help of the tool developed students can easily understand the aspects 

of energy dissipation in damped oscillations. Each energy graph shown addresses 

the transfer energy from a different perspective. The comparison between the 

graphs offers the overall picture on the energy of the system. By simulating the 

motion of the oscillator in the potential hole correlated with the motion in the phase 

space we can clarify a number of concepts. An example is the notion of phase and, 

in particular, the link between the starting phase angle and the initial conditions. 

The tool can be useful not only for teaching and learning concepts specific to 

oscillatory phenomena but also for a more complex evaluation. Thus, a theme that 

would assess higher order skills would be the adaptation of the tool to explore the 

initial conditions for the oscillator motion. In this case students must reorganize the 

spreadsheets taking into account the new input data to encapsulate the initial 

conditions given by initial displacement, x0, and the initial velocity, v0. The results 

obtained with the first tool can be used as input data for the newly created 

instrument. Accordingly, the functionality of the complementary tool can be 

verified. In this way both knowledge of Physics and Information Technology skills 

can be assessed. The tool can also be completed to take into account the over-

damping oscillations.  

The Excel spreadsheet represents a dynamic perspective and an analytical 

power of the software tool for students in the learning of Physics. 

Acknowledgments. This work was supported by the strategic grant POSDRU/159/1.5/S/137750, 

ñProject Doctoral and Postdoctoral programs support for increased competitiveness in Exact Sciences 

researchò cofinanced by the European Social Found within the Sectorial Operational Program Human 

Resources Development 2007ï2013. 

REFERENCES 

1. I. Stoica, S. Moraru, C. Miron, Rom. Rep. Phys. 63, 2, 567ï576, (2011). 

2. S. Moraru, I. Stoica, F.F. Popescu, Rom. Rep. Phys. 63, 2, 577ï586, (2011). 

3. D. Stoica, C. Miron, A. Jipa, Rom. Rep. Phys. 66, 4, 1285ï1300, (2014). 

4. G. Robinson, Z. Jovanoski, Spreadsheets in Education (eJSiE), 4, 3, Article 5 (2011). 

5. I. Grigore, C. Miron, E.S. Barna, Proceedings of The 9th International Scientific Conference 

eLearning and Software for Education 2, 502ï507, (2013). 

6. I. Grigore, Proceedings of the 8th International Conference on Virtual Learning, 306ï312 (2013). 

7. M.C. Oliveira, S. Napoles, Spreadsheets in Education (eJSiE) 3, 3, Article 2 (2010). 

8. J.C. Castro-Palacio, L. Velazquez-Abad, M.H. Gimenez, J.A. Monsoriu, Am. J. Phys. 81, 6, 

472ï475 (2013). 

9. M. Fowler, Sci. Educ. 13, 7–8, 791ï796 (2004). 

10. J. Benacka, Spreadsheets in Education (eJSiE) 3, 1, Article 5 (2008). 

11. H Rodrigues, N. Panza, D. Portes, A. Soares, Phys. Educ., 49, 5, 557ï563 (2014). 

12. T.H. Fay, Internat. J. Math. Ed. Sci. Tech. 43, 7, 923ï936 (2012). 

13. T.H. Fay, S.V. Joubert, Internat. J. Math. Ed. Sci. Tech. 30, 6, 889ï902 (1999). 



904 I. Grigore, Cristina Miron, E.S. Barna 14 

14. C.G. Carvalhaes, P. Suppes, Am. J. Phys. 76, 12, 1150ï1154 (2008). 

15. A. Belendez, J. Frances, M. Ortuno, S. Gallego, J.G. Bernabeu, Eur. J. Phys. 31, 3, L65ïL70 

(2010). 

16. D. Marciuc, C. Miron, E.S. Barna, Proceedings of the 9th International Conference on Virtual 

Learning, 460ï466 (2014). 

17. I. Grigore, E.S. Barna, Proceedings of the 10th International Scientific Conference eLearning and 

Software for Education 2, 217ï224 (2014). 

18. W.A.L. Wischniewsky, Spreadsheets in Education (eJSiE) 3, 1, Article 4 (2008). 

19. M. Hubalovska, S. Hubalovsky, International Journal of Mathematics and Computers in 

Simulation 3, 7, 267ï276 (2013). 

20. I. Kovacic, Z. Rakaric, Nonlinear Dynam. 64, 3, 293ï304 (2011). 

21. L. Cveticanin, Publications De LôInstitut Mathematique, Nouvelle s®rie 85, 99, 119ï130 (2009). 

22. P.S. Tambade, Lat. Am. J. Phys. Educ. 5, 1, 43ï48 (2011). 

23. A. Hristev, Mechanics and Acoustics, Edit. Didactica ĸi PedagogicŁ, Bucharest, 1982. 

24. T.W.B. Kibble, F.H. Berkshire, Classical Mechanics, 5th ed., Imperial College Press, London, 

2004. 

25. S.C. Bloch, Introduction to Classical and Quantum Harmonic Oscillations, A Wiley-

Interscience Publication John Wiley & Sons, 1997. 

26. R. Fitzpatrick, Oscillations and Waves: An Introduction, CRC Press, Taylor & Francis Group, 

2013. 


