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Abstract This article presents the use of Excel spreadsheets in the process of
teachinglearning of damped harmonic oscillations. Thectfanal force was
considered to be linearly proportional with the velocity of the oscillator. Under these
conditions, a didactic tool is described, made with the help of interactive spreadsheets
and highlighting the undetamping oscillations. The parameteharacteristic for the
damped oscillatory motion have been calculated with the input data, while the law of
motion and the kinetic, potential and total energy according to displacement and time
have been graphically rendered. Also, the graph for th#ladsc motion in the phase
space has been drawn. By exploring the graphic facilities of the spreadsheet we can
demonstrate how the motion of the oscillator is si
and in the phase space. By making the resistance cegffiefjual to zero, we obtain

the particular case of the undamped oscillator and the preservation of the total
mechanical energy is graphically highlighted. If the presented tool is used in the
classroom, students will be able to grasp aspects connedteel émergy dissipation

of the damped oscillator and clarify certain links between concepts specific to the
harmonic oscillatory motion. By reorganizing spreadsheets, the tool can be adapted so
that it encompasses the initial conditions in the input dathcamsiders the over
damping oscillations.
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1. INTRODUCTION

For a wide range of problems of classical Physics and quantum Physics, the
harmonic oscillator can represent ara@xor approximate model. Therefore, the
study of this system is of particular importance for Physics. The mechanical
harmonic oscillations can be described together with the oscillating electrical
circuits or the energy states of quantum systems. Thas,dévelopment of
interactive didactic tools for the teaching and learning harmonic oscillations proves
to be beneficial for any introductory course in Physics.
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The literature offers a variety of articles on study of the harmonic oscillator
[17 3]. Part of he work devoted to this topic approaches oscillations through the use
of Excel spreadsheets. Excel has the advantage that is accessible to a wider
audience than applications written in other programs [4]. Other facilities of this
program have been presahtey authors in their previous papers [5, 6]. It has been
shown that the development of interactive computing modules with graphics and
animations can integrate mathematical concepts in different areas. Consequently,
the spreadsheet was used to intergretdolutions for the differential equation of
motion of the harmonic oscillator based on different initial conditions [7]. Using
the acceleration sensor from the mobile phone and the associated application
AAccel erometer Monit or wayfhaevhichthedhtabdmd has s ho\
experiments with mechanical oscillations can be acquired and processed [8].
Studentsé analysis of the pendulum motion v
proven that they can reach a more firm understanding of mechanical cd®¢epts
Three spreadsheet models have been comparatively presented for the motion of the
gravitational pendulum. For each model there was graphically presented the time
dependence of the pendulum angle to the vertical and the formula to calculate the
oscillaion period was deduced. It has also been graphically rendered the error in
the calculation of the gravitational acceleration depending on the angle amplitude
starting from the oscillation period of the pendulum [10]. It was developed a model
to describe tb motion of onedimensional oscillator of variable mass [11].

Differential equations were investigated for patterns of vibration with dry
friction examples of the harmonic oscillator [12]. The nonlinear equation was also
discussed for the motion of a bodj§th a given mass attached to an elastic spring
[13]. The nonlinear regime of the simple gravitational pendulum was treated by
presenting approximate methods for calculating the oscillation period or for the
analysis of the solutions for the equation abtimn [14, 15]. There was also a
description of the simulation for the system with two harmonic oscillators coupled
with the aid of the educational math software GeoGebra that allows the
simultaneous operation with algebraic objects and graphic représestaBy
performing the application in the classroom, students were engaged in the
construction of virtual, dynamic and interactive models for the oscillatory
phenomena studied [16]. There was presented a tool developed with interactive
Excel spreadsheetso simulate the composition of perpendicular harmonic
oscillations with the same frequency. Changing the time moment in the input data
allows the stejoy-step visualization of the oscillator motion on the trajectory [17].

For perpendicular oscillation ofifterent frequencies animations with Lissajoux
figures were made with the help of spreadsheets [18]. Also with the help of
spreadsheets, there was created a simulation model correlated with the chart of the
law of motion for the damped harmonic oscillafp®]. Moreover, for thedamped
oscillations, we have the exact analytic form of the function endigplacement

with explanations of the successive oscillation amplitudes [20]. The same issue was
approached by the introduction of the function Lambert Wymtilating
conclusions regarding the energy dissipation of the oscillator. Numerical examples
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with graphic representations have rendered the case of the quadratic damping and
that of the linear damping [21]. For the quantic harmonic oscillator, an Eieel fi
was generated for the calculation and graphic representation of the wave functions
and the probability densities. The structure of the file was concretely used as a
calculation model for the vibration motion of the diatomic molecule of HCI [22].

This aticle presents an Excel tool with which we can calculate various
measures characteristic to the oscillatory motion and visualize certain dependences
between measures. The undamping regime is considered when the frictional
force linearly depends on thuscillator velocity. This model can be applied to an
elastic pendulum or a gravitational pendulum in a viscous medium. The graphic
facilities of the Excel spreadsheet are mainly used to highlight aspects connected to
the energy of the oscillator. In pauiar, making the resistance coefficient equal to
zero, we obtain the results for the undamped harmonic oscillator. We have drawn
the graphs depicting the law of motion of the oscillator and dependences on
displacement and on time of the kinetic, poteraiadl total energy. The energy
displacement graph was obtained without analytically explaining the energy as a
function of displacement. For this there were explored the possibilities for handling
the data from Excel tables. The enedisplacement graph sacorrelated with
velocity-displacement graph of the phase space. By changing the time moment in
the input data we can follow the motion of the oscillator in the potential hole and in
the phase space.

2. ORGANIZATION OF SPREADSHEETS

The structure of theobl is similar to that of other tools described by the
authors, exploring the facilities of Excel spreadsheets in the process of teaching
l earning of Physics [ 6, 17] . The main spre:
Datao and fAResul tdidedinte several sebéctionshptumtheb e i n g
graph area. In the first section we introduce the characteristics of the harmonic
oscillation and a time moment at which we calculate and graphically visualize
some physical measures for the second sectiohelis¢cond section we calculate
the parameters of the damping and the measures specified at the moment of time
introduced in the input data.

The measures introduced in the section
oscillator, m, in cell B4, the resistanceoefficient, r, in cell B5, the initial
amplitude,A,, in cell B6, the undamped periot, in cell B7, the starting phase
angle,j o, in cell B8. The moment of timé, is introduced in cell B10. In the first
subsection of t he A RteesperibdTsirocellsBékandtieen we cal ct

=13

total initial energy,Eo, in cell B14. In the second subs
Conditionso, we cal cukyan cell Biléhaed thennitidl i a | di spl
velocity, v, in cell B17. In the third subsectiomé i t | ed A Dampi ngo, we C

the logarithmic decremeni, in cell B19, the half timeJ,,, in cell B20 and the
time constantt, in cell B21. In the fourth subsection we calculate, for the time



894 I. Grigore, Cristina Miron, E.S. Barna 4

moment,t, the displacemenk, in cell B23, the velocityv, in cell B24, the kinetic
energy E, in cell B25, the potential enerdy,, in cell B26 and the total enerdy,

in cell B27. The measures that appear in the two sections are expressed in S.I.
units.

A B [ D E F G H I J K L M N (6]
; DAMPED OSCILLATIONS s ~
3 INPUT DATA Law of motion of the harmonic oscillator
4 |Mass of oscillator, m [Kg] 1,50 .
5 Resistance coefficient, r [Kgis] 1,60 E "
& Initial amplitude, A [m] 0,20 3 X0
7 |Undamped period, T, [s] 1,00 § —A()
8 |Starting phase angle, @, [grd] 30,00 8
9 &
10 Moment of time, t [s] | 0,10 a \
11
12 RESULTS / ww
13 Period, T [s] [ 1,00 Nt
14 | Total initial energy, E; [J] | 1,28 / \ / \ 7‘?"7—
15 Initial conditions
15 Initial displacement, x, [m] [ 017 ﬂl 1,00 \ 1, ﬂ/ 2,00 \ 2, 31&@ 0 4,50
17 Initial velocity, v, [mis] | 0,72
18 Damping characteristic measures / \}
19 Logarithmic decrement, D 0,54 il
20 Half time, Ty [s] 1,30
21 Time constant, t [s] 1,88
22 |Measures x, v, E, E; , E at moment time t
23 Displacement, x [m] 0,08 020
24 Velocity, v [mis] 1,12
25 Kinetic energy, Ec [J] 0,95 0,25
25 Potential energy, Ep [J] 0,18 Time, t [s]
27 | Total energy, E [J] 1,13 W y.
28

Fig. 11 Main spreadshéavith the displacemerttme graph of the undetamping oscillator.
The colored versions can be accessédtpt//www.infim.ro/rrp/

Energy-displacement dependence of the Energy-displacement dependence of the

harmonic oscillator a) r=1,60 Kg/s harmonic oscillator b) r=3,20 Kg/s
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Fig. 27 The energydisplacement graphs of the undkrmping oscillator for twealues of the
resistance coefficient: &)= 1.60kg/s; b)r = 3.20kg/s The colored versions can be accessed
at http://www.infim.ro/rrp/
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In order to do the calculations in Excel we use the following cell names:

AMsso for cel |l roB4f,orid Coelflf i Bbenti Ampl i tude_0
APeriod_ 00 for cel8, BATiI mébh afser ORce Iffloorr Bt @) | i B
cel l B13, AEnergy 00 for cell B1l4, ADi spl ac
for cell B17.

We will further exemplify the calculations done in the cells from the main
spreadsheet rendered in Flg For this, first we calculate the undamped angular
frequencywy, the damping factoh), and angular frequencw, with the help of the
relations presentedh the literature [23] and transcribed in Excel. Thus, in the
secondary sheet entitled fAAnnex_Calcul ations
we write the foll owing Excel formulas in thi
to calculate wy, i=Cotefrf/i(c2*Mass) O bt and cal cul at e
A=1 F(Fact or _b<FregugnayeOnZE g c t0 ¢ 1S QIRME Yalcuiatd O0 ) 0
w. The cells in which we calculaig, b andnhave been entitled AFreq
AFactor _bo and @ Fr B iopoed BIS pf the mia spréddsheetp er i o d
i s calcul ated wi t h t he Excel formul a A=11
Frequency P; ANOO) 0.

The displacement of the oscillator at the moment t is b according to
the relation[23, 24]:

(g = Age *cos(wt+ @) @)

The transcription in Excelf formula (1) in cell B23 becomes:
A=l F(Factor _b<Frequency O0; Amplitude_ 0*  EXP(
Factor _b*Time)* COS(Frequency_ P*Ti me+RADI ANS(
We have used the logical functidhh because in the case in which the input
data lead to a value of the dampingtéa higher than the undamped angular
frequency the message ANOO is udndespl ayed. I n
dampingegime are exceeded. To calculate the velocity of the oscillator in cell B24
we derive relation (1) accordirtg time and then wednscribe the result in Excel.
The initial displacement, in cell B16, is obtained by makiad in relation (1) and
transcribing the result in Excel. Analogously, we calculate the initial velocity in
cell B17 starting from the expression of the velocigdaced at any given time
moment. The calculation of the measupeg,,, andt in cells B19, B20 and B21 is
performed according to the measupendT following a similar procedure.
To calculate the kinetic energl, and the potential energl, in cels B25
and B26 we transcribe in Excel the relaidmown in the literature [226]. For
this, we take into account the values of the oscillator mass and of the undamped
period from the input data, as well as the values of the velocity and displacement
calculated in cells B23 and B24. The value of the total endtgfrom cell B27 is
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calculated as the sum of the values of the kinetic and potential energy from cells
B25 and B26.

|Energy-time dependence of the harmonic oscillatorl
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Fig. 31 The energydisplacement graphs of the unaamping oscillator forvto values of the
resistance coefficient: &)= 1.60kg/s; b)r = 3.20kg/s. The colored versions can be accessed at
http://www.infim.ro/rrp/

Energy, E [J]
N

—]

—

|

To calculate the kinetic energl, and the potential energlg, in cels B25
and B26 we transcribe in Excel the relaidmown in the literature [226]. For
this, we take into account the values of the oscillator mass and of the undamped
period from the input data, as well as the values of the velocity and displacement
calaulated in cells B23 and B24. The value of the total endtgfrom cell B27 is
calculated as the sum of the values of the kinetic and potential energy from cells
B25 and B26.

Figure 1 renders the graph for the law of motion. The curve traced in red
represents the displacement in relation to time. This curve is modulated by the
curves colored in blue which represent the exponential decrease in time of the
oscillation amplitude.

Figure 2 renders the dependences of the kinetic, potential and total energy on
the displacement of the oscillator for two values of the resistance coefficient r. In
the left panel we considered= 1.60 kg/s, while in the right panel= 3.20 kg/s.

The other input data are in accordance Wilp 1. By modifying the value of the
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time moment in cell B10 we can trace the position of the oscillator in the energy
displacement graph on the motion axis through the black dot. Also, we can notice
the motion of the dots associated to the position on the curves of the kinetic,
potential and ttal energy. In the respective figure we rendered the position of the
oscillator att = 0.10 s.

The energy of the harmonic oscillator at The energy of the harmonic oscillator at
moment of time t moment of time t

1,40

1,20

Kinetic Potential Total energy, Initial total
energy, Ec [J] energy, Ep [J] E[J] energy, EO [J]

Fig. 47 The energy of the oscillator in column and pie charts at a moment of time specified in the
input data. The colored versions can be accesdatpatwww.infim.ro/rrp/

The dependence of the kinetic energy on displacement is represented by the
family of parabolas opening down and colored in blue. These parabolas are
positioned asymmetrically to the ordinate axigus, the maximum values of the
kinetic energy are placed on each side of the equilibrium position. As these
maximum values decrease, in correspondence with the increasing time values, the
asymmetry of the curves is gradually reduced. tFor, the curve othe kinetic
energy tends towards zero in the equilibrium point. Theoretically, we have an
infinite number of parabolas, but on the graph the number of curves is limited by
the maximum value of the time moment fréme source table of the graph.

The depenence of the potential energy on displacement is represented by the
family of parabolas opening up and colored in green. The parabolas of the potential
energy have the same minimuBy,,i»= 0, inx = 0. Due to the symmetry to the axis
of the ordinate, thesparabolas overlap and we observe, on the graph, only the
initial branches of different heights, on each side of the equilibrium position. The
other branches, placed over the initial branches, have smaller and smaller heights
so that, fort- @, the curve ofthe potential energy tends towards zero in the
equilibrium point
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Energy-displacement dependence of the Energy-time dependence of the harmonic
harmonic oscillator oscillator
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Fig. 51 The particular case= 0: the energy graphs of the undamped harmonic oscillator.
The colored versions can be accessddtpt//www.infim.ro/rrp/.

The total energy is represented by the red curve with the branches supported
on the curves of the potential energy. The points of support on tiiescof the
potential energy, projected on the motion axis, represent the successive extreme
pointsof damped oscillations. The branches of the total energy curves narrow with
the oscillator motion so that, for @, the total energy tends towards zero. Also,
the consecutive branches of the total energy curves are closing in as the energy
decreases. Theuove of the total energy is tangent at the curves of the kinetic
energy in poinx = 0. In this point, the total energy is equal to the kinetic energy
because the potential energy is equal to zero. It can be observed that the branches
of the total energywrves are althe more open as the resistance coefficiei
bigger.

Through the graphics renderdeig. 2 shows how the potential hole of the
damped oscillator narrows with the oscillator motion around the equilibrium
position. When time tends towardtinite, the potential hole is reduced to zero.
The | i mit s poteftial hohddhavé heenirdprieserted on the graph by the
thick straight line segments colored in brown. fikal segments have been buiilt
At he wal | § ate=°Adftatl the Horizdbnwlsegment corresponding to the
valueE,. The segment traced in a brown dotted line highlights the initial conditions
on the energylisplacement graph. Thus, the bold points on this segment show the
displacement on the motion axis and thuga for the kinetic, potential and total
energy on the curves of the three measures at the moment
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IMotion in the phase spacel | a) =1,60 Kgis | IMotion in the phase spaceI | b) r=3,20 Kgis
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Fig. 67 The motion of the undettamping oscillator in the phase space for two values
of the resistance coefficient r: a¥ 1.60 kg/s; b)r = 3.20 kg/s. The colored versions can be accessed
at http://www.infim.ro/rrp/

Figure 3 renders the time dependences of the kinetic, potential ahd tota
energy for the undestamping oscillator. We have utilized the inpudiata from
Fig.1. The curve for the kinetic energy is rendered in blue, the curve for the
potential energy in green and the curve for the total energy in red. The curve of the
total energy represents the envelope of the kinetic and potential energy cheves.
dotted curve colored in brown represents the dependence of the total energy on
time according to the relation:

E(t) = Eoe' ™. (2)

Relation (2) is obtained in the conditions in which we neglect the variation of
the oscillation amplitude in a periodn Ithis case the energy decreases
exponentially in time with a damping coefficient ob2r/m [23]. It can be
observed that with the growth of the time values, the curve described by equation
(2) closes in on the total energy curve so thatt-for, the two curves coincide. As
the resistance coefficient decreases in the input data, it can be verified how the two
curves come closer and closer to each other until they overlap.

Figure 4 presents the energy of the oscillator at the moment of, tiiwed in
the input data, highlighting the comparison between the values. The left panel
renders, in a column chart, the values of the kinetic enEtgpptential energyk,,
and total energyk, and total initial energyk,. The right panel renders, in a pie
chart the values of the kinetic and potential energy as percentages of the total
energy. We have considered 0.10 s as irFig. 1.
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The energy graphs iRig. 5 result from making the resistance coefficient,
equal to zero in the input data. In the left dasfehe figure we have rendered the
energydisplacement graph and in the right panel the entingy graph. It can be
observed that we obtained the energy graphs for the undamped harmonic linear
oscillator. The graphs ifig. 5 highlight the preservatioof the total mechanical
energy, unlike the graphs froRig. 2 andFig. 3 highlighting the dissipation of the
energy in the presence of the frictional force.

A B BJ BK BL BM BN BO BP BQ BR BS BT

;12 DAMPED OSCILLATIONS 7~ ~
3 |INPUT DATA |Motion in the phase spacel
4 Mass of oscillator, m [Kg] 1,50 _ " —)
5 Resistance coefficient, r [Kg/s] 0,00 % = * (x0,40)
& |Initial amplitude, A, [m] 0,20 > = — 2] ~J g (x(t‘) vit)
7 Undamped period, T, [s] 1,00 £ /] i N -

7 S 8
g Starting phase angle, ¢, [grd] 30,00 3 ‘/ o0 \
10 |Moment of time, t [s] | 0,10 / fen \
11 8:66
12 |RESULTS / 5.48 \
13 |Period, T [s] I 1,00 '
14 Total initial energy, E, [J] I 1,18 826
15 Initial conditions 868
16 |Initial displacement, x; [m] | 0,17 op5 0p0 05 040 005 O0p0 O0P5 Of0 005 020 0p5
17 |Initial velocity, v, [m/s] | 0,63 8:28
1g  Damping characteristic measures 5:46
19 Logarithmic decrement, D 0,00 \ w— /
20 Half time, T2 [s] NO \ b /'
21 Time constant, t [s] NO 886 i
22 Measures x, v, E, E, , E at moment time t \ von /
23 Displacement, x [m] 0,08 \\ - //
24 Velocity, v [mis] 1,15 A —
25 Kinetic energy, Ec [J] 0,99 448
25 Potential energy, Ep [J] 0,20
27 Total energy, E [J] 1,18 L y,
28

Fig. 71 Main spreadsheet with the graph of the oscillator motion in the phase space withouigdamp
The colored versions can be accessedtpt//www.infim.ro/rrp/

An efficient way to describe the evolution of a physical system is to use the
phase space. That is why we have drawn the graph representing¢neeece of
the velocity on the displacement of the oscillator. Figure 6 renders the velocity
displacemat graph for the undetamping oscillator for two values of the
resistance coefficient. It is verified that the trajectory in the phase space isla spira
which narrows asymptotically towards the equilibrium paiat0. The bigger the
resistance coefficient, the quicker the spiral narrows towards the equilibrium point.
This aspect is observed by comparing the two graphs veldispyacement in
Fig. 6, in the left panelfor r = 1.60 kg/s, and in theight panel forr = 3.20 kg/s.
The starting phase is marked on the graph by the black dot at the end of the spiral.
The state of the oscillator at the momehas been marked by the blue dot on the
velocity-displacement curve. We have considered the input data Figmi. By
modifying the value of, in cell B10 of the main spreadsheet, we can trace the
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evolution of the oscillator through time by the motion of the blue dot on the
velocity-displacement curve.
The graphs fronfig. 6 are correlated with the enerdisplacement graphs

from Fig. 2 . Wi

t h

t he
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t he

dampi ng,

velocity-displacement graph froffeig. 6 is associated to a total energy curve with
the steeper brahes in the energy graph kig. 2. With the help of the graphs from
Fig. 2 andFig. 6 we can trace, at any time, the correspondence between the
' Iator

position
the phase space.
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By keeping the input data frorRig. 1, but making the resistance coefficient

equal to zero in cell B5 the velocithsplacement graph ifig.7 results. The
elliptic trajectory of the undamped harmonic oscillator in the phase space has been

obtained. We have nelered inFig. 7 the entire spreadsheet in order to observe the
other changes in the cells with results. By modifying the input data, it can be
verified that with the growth of the ofieitor energythe surface delimited by the
elliptic trajectory in thegphase pace increases. It can be observed the change in the
value of the initial velocity in cell B17 as well as in the velocity at the moment
t=0.10 s, in cell B24. Also, the change in the values of the kinetic, potential and
total energy in cells B25B26 and B27 can be observed. The Excel formulas

ead

® erdspestivel 2 0

written in the AResultso section

and of the message ANOO in

T andt are calculated.

A B C D E F G H | J

. on | tis] | ximl | At | At [vimis]|Ecl] [EpI| EWNI | B
2 0 0,00 017 0,20 -0,20 -0,72 0,39 0,89 1,28 1,28
3 1 0,01 0,17 0,20 -0,20 -0,78 045 0,81 127 1,26
4 2 0,02 0,16 0,20 -0,20 -0,83 052 0,74 1,26 1,25
5 3 0,03 0,15 0,20 -0,20 -0,68 059 0,66 1,24 1,24
B 4 0,04 0,14 0,20 -0,20 -0 .93 065 058 123 1,22
7 5 0,05 0,13 0,19 -0,19 -0.98 0,71 050 122 1.21
8 B 0,06 0,12 0,19 -0,19 -1,01 077 0,43 1,20 1,20
9 7 0,07 0,11 0,19 -019 -1.05 083 0,36 1,18 1,18
10, 8 0,08 0,10 0,19 -0,19 -1.,08 087 0,29 1,16 117
11 9 0,09 0,09 0,19 -0,19 -1.10 091 023 1,15 1,16
12| 10 0,10 0,08 0,19 -0,19 -1,13 095 0,18 113 1,15

Fig. 87 Thepartial presentation of the source table for the graph of the law of motion
and for the energglisplacement, energyme graphs. The colored versions can be accessed

at http://www.infim.ro/rrpl

The velocitydisplacement graph is useful for the interpretation of the

significance of the oscillation phase angle, in particular of the starting phase angle
i o- Thus, it is verified that the starting phase angle represents the angle between the

displacement axis and theraght line connecting the origin of the system of

coordinates with the point associated with the initial state. In particular,=0r

puttingj (=0 in cell B8, the point associated to the initial state is placed on the

0
B21

t he
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displacement axis at, = 0.20 m, and if we takg o = 90, it is placed on the
velocity axis atp=11.26 m/s.

For the graph of the law of motion and the energy graphs, energy
displacement, respectively enefiyye, a single source table is used that is placed
in a secondary spreadshe€he drawing of this table, partially renderedFig.8,
has been done in accordance with a procedure similar to that used by the authors in
other papers [6, 17]. In column B there are generated the values of the moments of
time, t, with the help of annicreasing numben, with a oneunit step in column A
and a time quantum equal to the $@@art of the oscillation period. In column C
we calculated the values of the displacemerand in columns D and E the values
of the variable amplitudeA(t) = A,e™, respectively, ANl =i Ae’™, according to
the time values from column B. Also according to the time values from column B
we calculated the values of the velocityin column F. In column G we calculated
the values of the kinetic energy,, accorihg to the values of the velocity from
column F. In column H we calculated the values of the potential enEpgy,
according to the values of the displacement from column C. In column | we
calculated the values of the total enerfgyby adding up the vais of the kinetic
and potential energy from columns G, respectively H. In column J we calculated
the values of the total energyd , according to relation (2), u
moments of time from column B. The domain of values for the graph ddthef
motion is determined by columns B, C, D and E and for the e#iengygraph by
columns B, G, H, | and J. 400 lines have been used for both the law of motion
graph and for the energyme graph. The number of lines has been settled so that
the maxinum value of the time moment in column B i3,4whereT is the
oscillation period. The domain of values for the enatigplacement graph is
determined by columns C, G, H, |, plus supplementary columns from K to S to
mark the particular elements. In thisseathe number of lines is correspondingly
extended through the association with supplementary columns. An example of a
particul ar el ement is represented by the 1
graphs inFig.4 andFig.6 two more source tabldsave been drawn, placed in
separate spreadsheets.

Any of the presented graphs can be placed next to the input data using the
option fAFreeze panel 0, having thus the poss
change in each and every parameter in the idgtat.

3. CONCLUSIONS

There are various approaches on how to provide training and development of
theoretically acquired knowledge in Physics. A new way of the teatdémging
strategy by using the spreadsheets approach was presented in this article.
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With the help of the tool developed students can easily understand the aspects
of energy dissipation in damped oscillations. Each energy graph shown addresses
the transfer energy from a different perspective. The comparison between the
graphs offers the oveigpicture on the energy of the system. By simulating the
motion of the oscillator in the potential hole correlated with the motion in the phase
space we can clarify a number of concepts. An example is the notion of phase and,
in particular, the link betweethe starting phase angle and the initial conditions.

The tool can be useful not only for teaching and learning concepts specific to
oscillatory phenomena but also for a more complex evaluation. Thus, a theme that
would assess higher order skills wouldthe adaptation of the tool to explore the
initial conditions for the oscillator motion. In this case students must reorganize the
spreadsheets taking into account the new input data to encapsulate the initial
conditions d@ven by initial displacement,, and the initial velocityy,. The results
obtained with the first tool can be used as input data for the newly created
instrument. Accordingly, the functionality of the complementary tool can be
verified. In this way both knowledge of Physics and Inforomafiechnology skills
can be assessed. The tool can also be completed to take intmtattee over
damping oscillations

The Excel spreadsheet represents a dynamic perspective and an analytical
power of the software tool for students in the learning g6Rk.
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