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Abstract. In this paper, we study the propagation of ultrashort optical pulses in 
superlattice with defects, placed in a photonic crystal. The dependence of the pulse 
transmission coefficient both on the parameters of the defect (depth and size) and on 
the parameters of the photonic crystal (depth and modulation period of the refractive 
index) is analyzed. 
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1. INTRODUCTION 

The progress of modern electronics is associated with a size reduction of 
electronic equipment, as well as the use of new materials with unique physical 
properties. From this point of view, one of the most promising candidates are 
materials with a controlled band spectrum, i.e. superlattices [1]. A superlattice is 
understood as a structure in which, in addition to the lattice potential, an artificially 
created potential acts on electrons (with a period significantly exceeding the lattice 
period) [2, 3]. 

The study of such structures is of great interest, both from the fundamental 
[4] and practical points of view [5]. The scientific component is due to the 
possibility of studying various physical effects in them (for example, the processes 
of localization and scattering of current carriers [6], quantum optical properties [7], 
and electronic energy spectrum [8]). The practical interest is due to reaching a 
qualitatively new level in the development of optical devices, for example, high-
efficiency semiconductor lasers [9-10]. The proximity of the energy spectrum of a 
solitary quantum dot to atomic levels makes it possible to create one-electron 
transistors and memory elements on their basis [11]. 

Another important problem is the stable propagation of localized structures 
[12, 13], including ultrashort optical pulses [14-17] in a medium with a spatially 
variable refractive index [18, 19], and in particular, in a photonic crystal [20, 21]. 
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In previous studies, the authors have demonstrated the propagation of such pulses 
while maintaining their localization in a photonic crystal based on carbon 
nanotubes [22], as well as the possibility of efficient generation of higher 
harmonics under the action of a magnetic field. In this work, we investigate the 
propagation of electromagnetic radiation in a medium of quantum dots with defects 
placed in photonic crystal.  

2. MODEL AND BASIC EQUATIONS 

We consider an alternating electric field propagating in a photonic crystal 
with a system of quantum dots in the geometry shown in Fig. 1. 

 

 
Fig. 1 – The geometry of the problem. The dashes along the z-axis conventionally show  

the change in the refractive index along this axis. 

The dispersion law for a semiconductor superlattice has the form: 

    0 2 cosp t t a p    , (1) 

where p is the momentum along the y-axis, a is the distance between adjacent 
quantum wells along the y-axis, t0 is the quantum well electron energy, and t is the 
transition integral determined by the overlap of electronic wave functions in 
neighboring quantum wells [23]. Note that we consider the system of quantum 
wells such that the electron tunneling between them occurs along the y-axis, while 
tunneling in other directions can be neglected. This determines the dispersion law 
of electrons (1), taking into account the fact that the quasimomentum p is directed 
along the y-axis. 
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The electromagnetic field in our model (Fig. 1) is described classically, 
taking into account Maxwell's equations. Choosing E = –c–1∂A/∂t and taking into 
account the dielectric and magnetic properties of the medium, we write the 
Maxwell's equations in the form: 

  22 2 2 2

2 2 2 2 2

, , 4 0,
n x y z

x y z c t c
   

    
   

A A A A j  (2) 

where ),,( zyxn  is the spatially modulated refractive index, i.e. a photonic crystal 
with modulation of the refractive index, and j is the current due to the action of the 
electric field of the pulse on electrons in the superlattice. The vector potential has 
the form: A = (0, Ay (x, y, z, t), 0). The electric field is assumed to be directed along 
the y-axis, and c is the light speed in a semiconductor matrix containing quantum 
dots. 

The electric field of the substrate is not taken into account here. In this 
model, we do not take into account interband transitions. Thus, we limit the 
frequency of laser pulses, which lies in the near infrared region. Since the typical 
size of the superlattice and the distance between quantum dots are much smaller 
than the typical size of the spatial region in which the ultrashort pulse is localized, 
we can use the continuous medium approximation and we assume that the current 
is distributed over the volume. The typical length at which the refractive index for 
a photonic crystal changes significantly is larger and does not introduce additional 
restrictions. 

Since the typical relaxation time for electrons in the superlattice τ can be 
estimated as 10–12 – 10–13 s [24], the ensemble of electrons at times typical for the 
dynamics of ultrashort optical pulse (of the order 10–14 s) can be described using 
the collisionless kinetic Boltzmann equation. 

Let us write the current density j = (0, jy, 0): 

 dy y y
s

qj p f


  ,  (3) 

where we introduce the group velocity of electrons:  y p p    , and f is the 
electron distribution function. We solve Eq. (3) by the method of characteristics: 

  
0

0

0d
q

y y y x y z
s q

q qj p p ,p A t ,p F
c


 

   
 

   (4) 

Integration in (4) is carried out in the first Brillouin zone and q0 = 2π/a.  
According to the calculations presented in [25], the final effective equation 

can be represented in the form: 
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 (5) 

Passing to a cylindrical coordinate system and taking into account that charge 
accumulation can be neglected [26], we can write the effective equation in the 
following form: 

 
 22 2

2 2 2

2 2

,1 sin 0,
n r zA A A qb aqr A

z r r r c t c

r x y

 
                  

 

 (6) 

Equation (6) is solved numerically using a direct finite-difference scheme of 
the cross type. The time and coordinate steps are determined from the standard 
stability conditions, and are decreased until the solution changed in the eighth 
significant digit. Here we assume that ∂ / ∂φ → 0 due to cylindrical symmetry 
because the charge accumulation can be neglected [26]. 

3. NUMERICAL SIMULATION RESULTS 

The initial conditions for the vector potential are: 
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     

 (7) 

where Q is the pulse amplitude; parameters γz, γr  determine the pulse width along the z 
and r axes, u is the initial velocity of the pulse, and the refractive index is modeled as: 

     
2

0
0 1 cos 2 1 exp z zn r z n z d

g
  

                
, , (8) 

where n0 is the average refractive index, α is the refractive index modulation depth, 
χ is the refractive index modulation period, d defines the depth of the defect, i.e. 
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how much the periodic structure of the refractive index is violated, and g 
determines the defect size, i.e. how strongly the region with violation of the 
refractive index is limited in space. 

The results of numerical simulations of the dynamics of three-dimensional 
ultrashort pulse in a photonic crystal with a superlattice and defects are presented 
in Fig. 2. 

 

 
Fig. 2 – The evolution of a three-dimensional extremely short optical pulse at different instants  
of time: a) 0.0002 ps; b) 1 ps; c) 5 ps; d) 10 ps. The dimensionless unit along the r and z axes 

corresponds to 2 · 10–5 m. 

It can be seen that the pulse propagates rather stably in a superlattice placed 
in a nonideal photonic crystal, experiencing diffraction spreading over time. 
However, in spite of the presence of the defect in the photonic crystal, the energy 
of the three-dimensional ultrashort optical pulse remains localized in a limited 
spatial region. The dispersion spreading along the pulse propagation axis is 
compensated by the nonlinearity of the medium (superlattice). It should be noted 
that the effect of the modulation depth of the refractive index of the photonic 
crystal manifests itself in a change in the pulse shape. An increase in the 
modulation period of the refractive index leads to an increase in the group velocity 
of the pulse wavepacket. This is due to the fact that the processes of interference in 
the nodes of the photonic crystal occur less frequently. It is obvious that with an 
infinite period, the group velocity of the wavepacket of the pulse will be maximum. 
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These results are repeatedly confirmed in works devoted to the propagation of 
ultrashort pulses in the photonic crystal based on carbon nanotubes, which also 
have a nonparabolic electron dispersion law [19, 27]. 

In Figs. 3 and 4 we show the effect of the depth and size of the defect on the 
ultrashort pulse, namely, on the transmission coefficient Ktr: 

  
0

pass
tr

I
K

I
 , (9) 

where Ipass is the intensity of the electric field of the transmitted pulse and I0 is the 
the intensity of the electric field of the pulse at the initial moment of time. 
 

 
Fig. 3 – The dependence of the pulse transmission coefficient on the defect depth  

(to determine d, see (9)). 

 
Fig. 4 – The dependence of the pulse transmission coefficient on the defect size. 

From Figs. 3 and 4 we can conclude that there is a monotonic dependence of 
the transmission coefficient of the electromagnetic wave on the defect parameters. 
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Moreover, in both cases, an increase in these parameters (depth and size of the 
defect) leads to a decrease in the amplitude of ultrashort pulse during its 
propagation in a superlattice placed in the photonic crystal. 

 

 
Fig. 5 – The dependence of the pulse transmission coefficient on the modulation period of the 

refractive index. For the defect parameters: d = 0.1, g =1.5 μm.  

 The dependence of the transmission coefficient of the electromagnetic 
wave on the modulation period of the refractive index is nontrivial, which is 
associated with the processes of the wave reflection at the boundaries of the defect. 
In this case, additional reflected waves are formed, and their interference with the 
incident pulses in antiphase leads to a decrease in the transmission index. 

 

 
Fig. 6 – The dependence of the pulse transmission coefficient on the modulation depth of the 

refractive index (t = 10 ps). For the defect parameters: d = 0.1, g = 1.5 μm.  

Figure 6 shows that with an increase in the modulation depth, a decrease in 
the pulse amplitude is observed. This dependence is close to a linear one. 

The results obtained are very promising, since they make it possible to control 
the value of the pulse energy passing through the defect. This plays an important 
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role for practical applications, for example, in information transmission devices, as 
well as in photonics, optoelectronics, and nanoelectronics. 

4. CONCLUSIONS 

The following main conclusions of this work can be drawn: 
1. A three-dimensional ultrashort optical pulse propagates stably in the medium 

of a photonic crystal with superlattice and defect. 
2. The parameters of the refractive index of a photonic crystal (period and 

depth of modulation) with superlattice have a significant effect on the shape and 
amplitude of the ultrashort pulse and can lead to its complete reflection. 

3. Along with the refractive index, the control parameters of the pulse include 
the depth and size of the defect, which also make it possible to control the pulse 
transmission coefficient. 
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