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Abstract. Here we present details on how the cooling effects of an opto-me-
chanical system are affected beyond the secular approximation. To this end, a laser
driven two-level quantum dot (QD) embedded in a phononic nano-cavity is investigated
for moderately strong QD-phonon couplings regimes. For these regimes, the use of a
secular approximation within the QD-phonon interaction terms is no longer justified as
the rapidly oscillating terms cannot be neglected from the system dynamics. Therefore,
one shows that although being small, their contribution plays an important role when
quantum cooling is achieved. The main contribution of the fast oscillating terms is
analytically estimated and one compares how the quantum cooling dynamics changes
within or beyond the secular approximation. The behavior of the quantum cooling
effect is investigated in the steady-state regime via the phonon field statistics.
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1. INTRODUCTION

The optical cooling processes have been intensively investigated during the past
decades. A large palette of various techniques have been used to cool down the matter
close to its ground vibrational state. The first related experimental achievements were
obtained on single atoms using two-level sideband cooling [1] and resolved-sideband
Raman cooling [2] techniques. The latter technique was further expanded to cool a
collection of atoms trapped in a two-dimensional optical lattice [3]. Since then, var-
ious techniques were theoretically suggested and experimentally applied, in order
to diversify and enhance the quantum cooling mechanism in different ways. Thus,
cooling schemes using quantum optical effects as electromagnetically induced trans-
parency for multiple multilevel trapped atoms [4] have shown a good applicability.
The use of quantum interferences for laser cooling has been further extrapolated for
the nonresolved-sideband regimes [5]. The process of two-photon cooling have al-
lowed distinguishing different matter states of a nonlinearly coupled qubit-resonator
system [6]. Furthermore, more exotic schemes were proposed to give additional con-
trol to quantum cooling processes as well as to cool the matter at larger scales. For
example, cooling at laser-qubit resonance can be obtained in a photonic-crystal en-
vironment [7]. Faster cooling dynamics may be achieved via quantum interferences
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within a two-mode cavity with a movable mirror [8] or via the collective effects of a
collection of coupled qubits interacting with a superconducting circuit [9]. A big step
forward for the state-of-the-art in the quantum control of the matter at mesoscopic
scales has been reported for near-ground state cooling experiments of a nanomechan-
ical resonator [10, 11]. For this quantum mechanical oscillator, strong correlations
of the electromagnetic and quantum mechanical vibrations were predicted in Ref.
[12]. These important results, together with advanced techniques of fabrication of
different laser driven phononic devices [13], have enhanced a particular interests for
the realm of research at the edge of condensed matter and quantum optics, i.e., the
optomechanics. Within a large family of various optomechanical devices [13, 14],
the ones that use mechanical quantum resonators as nanocavities or nanobeams are
good candidates for obtaining and controlling the quantum effects of the mechanical
vibrations.

In this paper, one investigates the optical quantum cooling effect within the
strong coupling regime for a driven quantum dot (QD) embedded in a quantum me-
chanical resonator. The cooling scheme is described by Stokes transitions among the
laser-QD-phonon interactions. More precisely, for a red-detuned pumping laser, i.e.,
for the laser frequency set bellow the resonance, the excitation of the driven QD is
followed by the absorption of phonons from the acoustical cavity. The QD may de-
cay through two different paths: through the laser pump or through the spontaneous
emission effect. For the laser driven decay the absorbed phonons are re-emitted,
while for the spontaneous emission effect, the QD decays to its ground state with-
out emitting any phonons into the cavity. Therefore, it is the spontaneous emission
that plays the essential role for quantum cooling scheme. Here, one shows that the
cooling phenomenon is enhanced for stronger QD-phonon coupling regimes. These
regimes require a specific analytic treatment where a usual secular approximation for
the Hamiltonian terms in the interaction picture is no longer justified, as for small
numbers of vibrational quanta of the mechanical resonator the system cooling dy-
namics becomes affected by the fast-rotating terms.

This paper is organized as follows. In Sec. 2 one presents the system model,
i.e., the system Hamiltonian and master equation, and the theoretical approach used
to solve the system dynamics. In Sec. 3 the obtained results are presented and dis-
cussed. A summary is given in Sec. 4.

2. THE MODEL

Here we investigate a two-level pumped QD fixed on a quantum mechanical
resonator. Various structures of the mechanical oscillator that allows to incorporate a
QD may be chosen, e.g., multilayered acoustical nanocavities, vibrating membranes
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Fig. 1 – The schematic of the model: A laser driven two-level quantum dot fixed on a multilayered
acoustical nanocavity.

or nanobeams [13].
In Fig. 1, one represents the schematic of the considered model using a mul-

tilayered acoustic nanocavity with distributed Bragg reflectors [15, 16]. The QD
is described via the transition frequency ωqd between its ground state |g〉 and ex-
cited state |e〉. The atomic operators are defined as S+ = |e〉〈g|, S− = |g〉〈e|, Sz =
(|e〉〈e|− |g〉〈g|)/2 and obey the standard SU(2) algebra commutation relations. The
QD spontaneous decay is given by the rate γ and a dephasing rate γc is introduced
to describe the QD imperfections. The QD is driven by an intense laser of frequency
ωL that interacts semi-classically at a Rabi frequency Ω. The QD also interacts with
the cavity phonons with a coupling rate g. The cavity phonon field is described by
its frequency ωph and the bosonic operators b and b†. The field is treated in the good
cavity limit, with a cavity damping rate κ. The environmental damping reservoir is
described as a thermal bath where the surrounding temperature T is expressed via the
bath mean phonon number n̄= 1/

(
exp(~ωph/kBT )−1

)
, here kB is the Boltzmann

constant. The system Hamiltonian is given as:

H = ~ωqdSz +~ωphb
†b+~Ω(S+e−iωLt +eiωLtS−) +~gS+S−(b†+ b), (1)

where the first term is the free QD term followed by the free cavity term, the third
term is the QD-laser interaction and the last one is the QD-phonon interaction. The
system dynamics is described by the master equation of the density operator ρ, de-
fined as:

ρ̇ = − i
~

[H,ρ] +κ(1 + n̄)L(b) +κn̄L(b†) +γL(S−) +γcL(Sz), (2)

where the Liouville superoperator is defined as L(O) = 2OρO†−O†Oρ− ρO†O
for a given operator O.

The system dynamics of the model is solved using the method given in [17].
First, one applies the dressed-state transformation to the Hamiltonian expressed
within a frame rotating at the laser frequency ωL. The new Hermitian basis is defined
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by the vectors:

|+〉= sinθ|g〉+ cosθ|e〉 and |−〉= cosθ|g〉− sinθ|e〉. (3)

where θ = arctan(2Ω/∆)/2 and ∆ = ωqd−ωL. Next, in the interaction picture
and dressed-states basis, the Hamiltonian terms may be rearranged according to their
frequency of oscillation. Therefore, one may define the slow and the fast oscillating
parts of the Hamiltonian H =Hslow +Hfast:

Hslow = −~g sin(2θ)

2
{b†R−ei(ωph−2Ω̄)t + H.c.},

Hfast = ~g(sin2 θR−−+ cos2 θR++){b†eiωpht + H.c.}

− ~g
sin(2θ)

2
{b†R+ei(ωph+2Ω̄)t + H.c.}, (4)

as long as ωph and Ω̄ =
√

Ω2 + (∆/2)2 are of the same order of magnitude. The
new QD dressed-state operators are defined as R+ = |+〉〈−|, R− = |−〉〈+|, R++ =
|+〉〈+|, R−− = |−〉〈−|, Rz = R++−R−− and satisfy the SU(2) standard commu-
tation rules as well.

At this point, one identifies the coupling regimes as follows. For weak QD-
phonon couplings, a secular approximation applied on the fast-rotating terms is com-
pletely justified as long as one has g� Ω̄. However, with increasing g the contribu-
tion of the fast rotating terms is enhanced and may be treated perturbatively. Their
main contribution is evaluated as [18]:

Heff
fast = − i

~
Hfast(t)

∫
dt′Hfast(t

′) =H0−~∆̄Rz +~βb†bRz, (5)

where H0 is a constant that is neglected as it does not contribute to the system dy-
namics,

∆̄ =
g2

2

[
cos(2θ)

ωph
− sin2 (2θ)

4(ωph + 2Ω̄)

]
and β = g2 sin2 (2θ)

4(ωph + 2Ω̄)
.

In the weak coupling regime, a perturbative treatement would also lead to the secular
approximation case, as ∆,β→ 0. For stronger couplings, the contribution of Heff

fast

increases and may play an important role for some particular cases. These cases will
be discussed in the next Section. Note that the strong coupling regimes considered
further are, however, related to moderate strong couplings, in order to keep the per-
turbative method valid. The final form of the Hamiltonian, including theHeff

fast terms,
is given in a frame rotating at the frequency ωph−2Ω̄, namely:

H = ~(ωph−2Ω̄)b†b−~∆̄Rz +~βb†bRz−~g
sin(2θ)

2

(
b†R−+R+b

)
. (6)

The master equation is also expressed in the dressed-state basis and within a
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secular approximation applied in the interaction picture for the spontaneous emission
terms in the interaction picture:

∂ρ

∂t
= − i

~
[H,ρ] +κ(1 + n̄)L(b) +κn̄L(b†)

+γ+L(R−) +γ−L(R+) +γ0L(Rz), (7)

where, the new dressed-state decay rates are: γ+ = γ cos4 θ+ 1
4γc sin2 (2θ), γ− =

γ sin4 θ+ 1
4γc sin2 (2θ), and γ0 = 1

4 [γ sin2 (2θ)+γc cos2 (2θ)], while the applied sec-
ular approximation is valid as long as 2Ω̄� γ.

In order to solve the master equation (7), one projects it within the system
basis {|i,n〉 ≡ |i〉 ⊗ |n〉} where {|i〉, i ∈ {+,0,−}} is the QD dressed-state basis
and {|n〉,n ∈ N} is the phonon Fock state basis. One follows the method given
in Refs. [17, 19], where after some arrangements of the reduced density matrix
elements, a first projection into the atomic basis leads to a system of first order linear
coupled differential equations of the following variables ρ(1) = ρ++ + ρ−−, ρ(2) =
ρ++ − ρ−−, ρ(3) = b†ρ+− − ρ−+b, ρ(4) = b†ρ+− + ρ−+b, ρ(5) = ρ+−b

† − bρ−+,
ρ(6) = ρ+−b

†+ bρ−+, where ρi,j = 〈i|ρ|j〉, {i, j}= {+,−}.
After projecting the system of equations in the phonon field basis, the new sys-

tem variables are defined as P (i)
n = 〈n|ρ(i)|n〉. Once truncated at a certain maximum

nmax of considered Fock states, this system may be easily solved in the steady-
state regime by considering the probability conservation property of the diagonal
elements of the density matrix. Moreover, the truncation of the system is justified by
the asymptotic behaviour of these elements. Once solved, the phonon field statistics
may be deduced from the system variables.

Therefore, the quantum statistics are described via the cavity field mean phonon
number:

〈n〉 = 〈b†b〉=
∞∑
n=0

nP (1)
n '

nmax∑
n=0

nP (1)
n , (8)

and the cavity second-order phonon-phonon correlation function:

g(2)(0) =
〈b†b†bb〉
〈b†b〉2

=

∑∞
n=0n(n−1)P

(1)
n

〈n〉2
'
∑nmax

n=0 n(n−1)P
(1)
n

〈n〉2
. (9)

3. RESULTS AND DISCUSSION

The quantum dynamics of the system is investigated in the steady-state regime
via the cavity mean phonon number 〈n〉 and its second-order phonon-phonon corre-
lation function g(2)(0) is presented in Fig. 2. The negative laser-QD detuning, i.e., a
blue-detuned pumping laser, corresponds to anti-Stokes transitions that leads to the
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Fig. 2 – The second-order phonon-phonon correlation function g(2)(0) (blue curves 1 and 1’) and the
mechanical resonator mean phonon number 〈n〉 (red curves 2 and 2’) as functions of the normalized
detuning ∆ by the Rabi frequency Ω, within the secular approximation (dashed lines 1’ and 2’) and

beyond the secular approximation, i.e., considering the fast rotating terms (continuous lines 1 and 2).
The inset represents a close look at the mean phonon number when maximum cooling effect occurs.

generation of phonons as reported in Ref. [19]. The resonant case, i.e., ∆ = 0, does
not contributes to the phonon statistics and the cavity is in equilibrium with the ther-
mal reservoir. Consequently, the mean phonon number is given by n̄ and the phonons
are thermally distributed, i.e., g(2)(0) = 2.

The quantum cooling regime is reached for red-detuned laser, i.e., for positive
laser-QD detuning. The cooling mechanics is based on Stokes transitions among the
laser driven QD and phonons combined with the spontaneous emission effect. The
cavity mean phonon number decreases to the near-ground state. Within the strong
coupling regime, the cooling effect is enhanced in the most cooled region. Although
being small, the main contribution of the fast-rotating terms becomes significant in
the region where the mean phonon number is decreased as well, as it is shown in the
inset of Fig. 2. Also, it considerably shifts the detuning position when maximum
cooling is achieved and predicts a more larger range for the applied laser detunings
for the mechanical resonator to be cooled near to its ground-state. Note that the
cooling scheme is considered in the good cavity limit of the phonon fields, i.e., κ� γ.

In order to reach the near ground-state of the resonator, one also requires high
damping rates comparing to the temperature of the environmental reservoir due to
the pumping effect of the thermal bath. As expected, one observes super-Poissonian
behaviour of the vibrational quanta during the cooling effect. This behaviour is also
affected in the strong coupling regime and the fast-rotating terms give a more accu-
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rate description of it. An analogy may be made with the phonon laser effect, where
these terms change the distribution of the phonon emission from a coherent to a sub-
Poissonian one [19].

4. SUMMARY

In summary, the investigation presented in this paper of the quantum dynamics
of a laser driven quantum dot embedded in an acoustical nano-cavity for moderate
strong quantum-dot-phonon couplings have improved the prediction of the quantum
cooling mechanism. These regimes require a theoretical approach that treats the
quantum dynamics beyond a Hamiltonian secular approximation. Therefore, a more
prominent cooling effect is estimated when the contribution of the fast rotating terms
is considered. Moreover, the fast terms play an essential role in the behaviour of the
phonon statistics, describing a more prominent super-Poissonian statistics during the
cooling process.
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