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Abstract. In this article we investigate how students can build and use, in high-school 
Physics lessons, various interactive simulations aiming to a better understanding of the phenomenon 
of multiple reflections in two intersected plane mirrors. The applets achieved with GeoGebra allow 
changing the angle between the mirrors, the position of the source object and the position of the first 
reflexion point of a successively reflected ray of light. The applets provide a dynamic representation 
of the images of a movable object and also a representation of a reflected ray, highlighting the relation 
between the positions of the images and the extensions of a reflected ray. After discussing the 
positioning of the images of the point-like objects, we will address the same problem for some 
colourful polygonal shapes, resulting in kaleidoscopic figures. Finally, using GeoGebra, the students 
can simulate the movement of a point-like body that collides elastically against two walls forming an 
arbitrary angle, based on the analogy between the trajectory of the body and the path of a successively 
reflected ray in two plane mirrors. By building and using simulations students have the opportunity to 
make connections between their Math and Science knowledge, developing their skills in solving 
interdisciplinary problems. 
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1. INTRODUCTION 

In this article we show that the GeoGebra software represents a suitable tool 
to build simulations of the phenomenon of multiple reflections in two plane 
mirrors. By involving students in modelling-based learning activities [1, 2], we aim 
to eliminate some misconceptions regarding this phenomenon, while developing 
students’ skills in applying and connecting their Math and Physics knowledge. In a 
note in 1902, Lloyd showed that the problem of determining the number of images 
formed in two intersected plane mirrors was incompletely solved in the textbooks 
at that time [3]. Only later, Brown [4], Kulkarny [5] and Liu [6] bring solutions for 
the general case, in different ways.  

Over time, the practitioner teachers have concerned themselves with making 
more accessible the understanding of the phenomenon [7, 8]. Merrill, in the early 
years of using computers in teaching, tested the use of computer programs for the 
study of geometric optics [9]. The emergence of the dynamic geometry software 
has created the opportunity to develop applications that facilitate the understanding 
of the various concepts of Physics, including geometric optics [10, 11].  
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2. DYNAMIC REPRESENTATION OF THE IMAGES OF AN OBJECT IN 
TWO INTERSECTED PLANE MIRRORS 

The first problem posed to students is determining the number of images of 
an object in two plane mirrors forming an arbitrary angle u. In general, textbooks 
address only the situation where the angle u formed by the mirrors has the measure 
equal to an integer fraction of a straight angle, that is 180º/n, where n is an integer. 
In this case, the number of images is equal to 2n-1. But what happens when the 
angle u does not have this special form? By using the GeoGebra software, the 
students can achieve a simulation of the phenomenon to help them discover the 
correct answer.  

First, students can build a mathematical model of the optical system, which 
will be the basis of the computer simulation. We will represent the two mirrors by 
two segments, OA and OB, where the point O is the origin of the reference system, 
and the extremities A and B have the polar coordinates (l, u/2), and respectively (l, -
u/2). In this reference system, a point object S placed between the two mirrors has 
the polar coordinates (r, t), with t being in the range (-u/2, u/2). To determine the 
number of images, we will take into account that the next image will appear only if 
the previous image is placed in the semi-plane in front of the mirror in which it 
would be reflected. By solving the obtained inequalities, students will find the 
mathematical expression of the number of the images, and entering the commands 
listed in Table 1 they will generate a GeoGebra simulation of the phenomenon. 

 
Table 1  

 GeoGebra commands for dynamically representing the multiple images of a point 
object in two mirrors intersected at an angle u 

Command Result 

u=26o 
Defining the angle formed by the 
two mirrors 

O=(0,0); l=10;  
A=(l cos(-u/2), l sin(-u/2)); Segment[O,A] 
B=(l cos(u/2), l sin(u/2)); Segment[O,B] 

Representing the two mirrors by 
the segments OA and OB  

r=4; t=10o; S=(r cos(t), r sin(t)) Representing the object S 
n_1=floor(1/2-t/u+180° /u) 
n_2=floor(1/2+t/u+180° /u) 

Defining the number of images  

S_i=Sequence[(r cos((-1)^i (t+i u)), r sin((-
1)^i (t+i u))), i, 1, n_1] 
T_i=Sequence[(r cos((-1)^i (t-i u)),  r sin ((-
1)^i (t-i u))), i, 1, n_2 ] 

Representing the images  

 
Using the achieved simulation, students can see that if the angle u formed by 

the mirrors is not a whole fraction of a straight angle, then the number of images 
will change with the value of the angular coordinate t of the S object. They can 
note that the number of images changes when the S object crosses the extensions of 
the last mirror's images (Fig. 1). Then students can infer mathematically that the 
changes in the value of the numbers of the images occur when the angular 
coordinate of the object S crosses the limit values ± u (f-1/2), where we denote by f 
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the fractional part of the ratio 180°/u [12]. With our simulation, we can observe 
that if f < 1/2 the number of images formed is larger when the object is near one of 
the two mirrors. If f >1/2 the number of images is higher when the object is in the 
central area, between the extensions of the last two images of the mirrors. 

 

 

Fig. 1 – A dynamic representation with GeoGebra of the optical system. The full color version may 
be accessed at http://www.infim.ro/rrp/. 

Figure 2 shows another simulation, obtained by extending the previous one. 
Here 35 red dots and 35 blue dots are represented, randomly distributed by the 
application, together with their 1330 images in two mirrors forming an 18 degrees 
angle. Table 2 lists the commands used to generate this kind of representation. 

 

 

Fig. 2 – A simulation for the reflection of 70 differently coloured points in two intersected mirrors. 
The full color version may be accessed at http://www.infim.ro/rrp/.  
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 By replacing the points with some differently coloured triangles, we obtain 
various kaleidoscopic images, as seen in Figure 3. The five different coloured 
triangles generating this kaleidoscopic image can be moved using the control 
points displayed after ticking the box labelled Control Points. Each triangle has 
two control points: one that allows us to rotate the triangle and another that allows 
us to translate it. The generated image, captured in Figure 3, has seven axes of 
symmetry represented by the mirrors and their images. The students can prove that 
the images of each triangle can be obtained by applying rotations of angles 
multiple of 2u to the original triangle and its primary image in one of the two 
mirrors, clockwise and respectively anticlockwise. 

 
Table 2  

 GeoGebra commands for representing few randomly distributed points and their 
images in two mirrors forming an arbitrary angle u 

Command Result 

n=30 
Defining the number of randomly 
placed points 

dist=Sequence[RandomBetween[1, 700] 
/ 100, i, 1, n] 

Generating the list containing the 
distances from origin to the randomly 
placed points 

angl=Sequence[(-u) / 2 + i u / (n + 1), i, 
1, n] 

Creating the list of angular 
coordinates of the points 

Sequence[(Element[dist, i] 
cos(Element[angl, i]), Element[dist, i] 
sin(Element[angl, i])), i, 1, n] 

The list of points that will be reflected 
in the two mirrors 

nS=Sequence[floor((u / 2 + 
Element[angl, i] + π) / u), i, 1, n] 
nT=Sequence[floor((u / 2 - 
Element[argm, i] + π) / u), i, 1, n] 

The lists containing the number of 
images for each point 

equence[Sequence[(Element[dist, j] 
cos((-1)^(i + 1) (i u - Element[angl, j])), 
Element[dist, j] sin((-1)^(i + 1) (i u - 
Element[angl, j]))), i, 1, Element[ns, j]], 
j, 1, n] 

Representing the images S_i  of the 
points 

Sequence[Sequence[(Element[dist, j] 
cos((-1)^i (i u + Element[angl, j])), 
Element[dist, j] sin((-1)^i (i u + 
Element[angl, j]))), i, 1, Element[nt, j]], j, 
1, n] 

Representing the images T_i  of the 
points 
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Fig. 3 – A kaleidoscopic image obtained with GeoGebra. The full color version may be accessed at 
http://www.infim.ro/rrp/.  

3. DYNAMIC REPRESENTATION OF A MULTIPLY REFLECTED RAY  

To understand how multiple images are formed, it is useful to represent a 
light ray reflected successively by the two mirrors. We can easily determine the 
number and position of the successive reflection points by applying the so-called 
unfolding procedure [8]. If A1, the first point of reflection of the light ray, is located 
on the OB mirror, we construct in the semi-plane delimited by the line OB which 
does not contain point A, a few adjacent angles with the measure equal to u (Fig. 
4). The total number of reflection points of a light beam starting from point S and 
reflected in point A1 is equal to the number of points in which the SA1 line 
intersects the sides of the angles with measure u previously constructed. By an 
elementary geometric reasoning [12-13] students can calculate the number of 
reflection points.  

Based on the method of unfolding, we achieve a GeoGebra simulation to 
represent the path followed by a multiply reflected ray (Fig. 4). The obtained applet 
allows changing the angle u between the mirrors as well as the positions of the 
source object S and of the first point of incidence A1. The commands used to create 
the applet are listed in Table 3.  
 

Table 3  
 GeoGebra commands for representing a ray reflected in two mirrors intersected at 

an angle u 

Command Result 

u=53º 
Defining the angle formed by the 
two mirrors 

O=(0,0); l=10; A=(l cos(u / 2), l sin(u / 2)); Representing the two mirrors by 
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B= (l cos(-u / 2), l sin(-u / 2)); 
f=Segment[O,A]; g=Segment[O,B] 

the segments OA and OB 

r=4; t=0.04; S=(r cos(t), r sin(t)) Representing the source S 

A_1=Point(g) 
Representation of the first 
reflection point on the mirror g = 
OB 

q=ceil(180°/u);  
list1=Sequence[(l cos(u / 2 - i u), l sin(u / 2 - 
i u)), i, 1, q] 
list2=Sequence[Ray[O, Element[list1, i]], i, 
1, q] 

Representing the sides of adjacent 
angles of measure u in the semi-
plane delimited by OB that does 
not contain the point A. 

h=Ray[S,A_1] Representing the ray SA_1 

i_1=Angle[B, A_1,S] 
Defining the first angle of 
incidence  

q1=ceil((180° - i_1) / u) 
Determining the total number of 
reflection points 

list3=Sequence[Intersect[h, Element[list2, 
i]], i, 1, q1] 

Determining the intersection 
points of SA_1 ray with the sides 
of the adjacent angles with 
measure u 

list4=Sequence[Circle[O, Segment[O, 
Point[Circle[O, Element[list3, i]]]]], i, 1, 
q1] 

Determining the distances from 
point O to the reflexion points  

list5=Sequence[Intersect[Element[list4, i], 
Ray[O, B]], i, 1, q1, 2] 

Determining the position of the 
reflection points on OB mirror 

list6= Sequence[Intersect[Element[list4, i], 
Ray[O, A]], i, 2, q1, 2] 

Determining the position of the 
reflection points on OA mirror 

a=Length[list5]; b=Length[list6] 
Determining the number of 
reflection points  

c=Min[a,b]; d=Min[a-1,b] 
ray1=Sequence[Segment[Element[list5, i], 
Element[list6, i]], i, 1, c] 
ray2=Sequence[Segment[Element[list6, i], 
Element[list5, i + 1]], i, 1, d] 

Representing the multiply 
reflected ray 

i= PerpendicularLine[Element[list5, a], g] 
j= PerpendicularLine[Element[list6, b], f] 
P= If[a � b, Reflect[Element[list5, a], j], 
Reflect[Element[list6, b], i]] 
k=If[a � b, Ray[Element[list6, b], P], 
Ray[Element[list5, a], P]] 

Representing the last portion of the 
reflected ray  

S’=Reflect[S, i]; Ray[A_1, S'] 
Representing the last portion of 
reflected ray  for the case when A1 
is the only point of reflection 
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Fig. 4 – Simulating a multiply reflected ray based on the unfolding method. The full color version 
may be accessed at http://www.infim.ro/rrp/. 

4. A GEOGEBRA DEMONSTRATION FOR THE BELONGING OF 
IMAGES TO THE EXTENSIONS OF A MULTIPLY REFLECTED 

RAY   

The two simulations can be combined to highlight that the images are placed 
on the extension of the segments representing the successively reflected ray. Figure 
5 shows the configuration obtained for the case when the angle u formed by the 
mirrors has the measure of 8º and the angular coordinate of the object S is 0.7º. The 
GeoGebra application allows visualizing details in this representation by pressing 
the Zoom In button. The first point of incidence, A1, can be moved with the mouse, 
and so new configurations will be generated. 
 

 

Fig. 5 –GeoGebra simulation showing the relation between the images and the extensions of a 
multiply reflected ray. The full color version may be accessed at http://www.infim.ro/rrp/.  
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The two sliders in the right-hand panel of the application (Fig. 5) allow 
changing the angle between the mirrors and changing the position of the S object. 
At any change, the application recalculates the values of the dependent variables 
and updates the images positions and also the reflected ray path. Table 4 lists the 
GeoGebra commands added to represent the segments that link the object's images 
to the reflection points. 

 
Table 4 

 GeoGebra commands for representing segments determined by images and 
reflection points 

Command Result 
imd= Sequence[(r cos(-(i u + t)), r 
sin(-(i u + t))), i, 1, q1, 2] 
Sequence[Segment[Element[list5, 
i], Element[imd, i]], i, 1, a] 

Representing segments joining the reflection 
points on the OB mirror with the images 
placed in the semi-plane bounded by OB line 
and not containing A point 

imu= Sequence[(r cos(i u + t), r 
sin(i u + t)), i, 2, q1, 2] 
Sequence[Segment[Element[list6, 
i], Element[imu, i]], i, 1, b] 

Representing segments joining the reflection 
points on the OA mirror with the images 
placed in the semi-plane bounded by OA line 
and not containing B point 

5. AN ANALOGOUS SIMULATION FOR SUCCESSIVE COLLISIONS 

The achieved simulations gives us the opportunity to discuss with our 
students the analogy between the reflected ray path and the trajectory of a point-
like object that starts from point S, collides elastically the OB wall at point A1, then 
collides the OA wall, then the OB wall again, etc. An animation to simulate the 
movement of this point can also be achieved with GeoGebra. We create a variable 
v, for defining the speed of the object, and a variable tc, representing the time 
elapsed since the beginning of the movement. We initialize tc variable with 0, 
setting on the automatic increment of its value for running the animation. We 
represent the point M, which runs on the semi-line h = (SA1 with constant speed v, 
then we will determine the corresponding position of M on the real trajectory, 
obtained by the above-mentioned method of unfolding. Table 5 lists the GeoGebra 
commands added to achieve the animation. 

 
Table 5  

 GeoGebra commands for simulating the elastic collisions with two walls forming 
an angle u 

Command Result 

tc=0; v=1; dist=tc*v; c= Circle[S, dist]; M= 
Intersect[c, h] 

Determining the position of 
the object on half-line 
h=(SA1, representing the 
unfolded trajectory  
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ang1= Sequence[Angle[M, O, Element[list3, i]], i, 1, 
q1, 2] 
sl1= Sequence[Ray[O, (r cos((-u) / 2 + Element[ang1, 
i]), r sin((-u) / 2 + Element[ang1, i]))], i, 1, a] 
Sequence[Intersect[Element[ray1, i], Element[sl1, i]], 
i, 1, c] 

Representing the moving 
point on the A2k-1A2k 
segments  

ang2=Sequence[Angle[M, O, Element[list3, i]], i, 2, 
q1, 2] 
sl2=Sequence[Ray[O, (r cos(u / 2 - Element[ang2, i]), 
r sin(u / 2 - Element[ang2, i]))], i, 1, a] 
Sequence[Intersect[Element[ray2, i], Element[sl2, i]], 
i, 1, d] 

Representing the moving 
point on the A2kA2k+1 
segments  

C= If[a � b, Intersect[k, Element[sl2, c]], Intersect[k, 
Element[sl1, a]]]; M’=Reflect[M, g] 

Representing motion on the 
last portion of the trajectory  

6. CONCLUSIONS 

Students' involvement in building simulations for the multiple reflections in 
two plane mirrors helps them understand this phenomenon in depth and distinguish 
the various possible situations. Using a dynamic geometry software, such as 
GeoGebra, the students can easily check the correctness of the mathematical model 
they built. Validation of the mathematical model can be done experimentally, using 
the device made up of two plane mirrors joined by a hinge. Also, to understand the 
unfolding method that we used to represent a multiply reflected ray, we can print 
the image presented in Figure 4 on a transparent foil. By successively folding the 
foil along the sides of the six congruent angles, we can visualize the path of the 
multiply reflected ray. After bending, the semi-line SA1 drawn on the transparent 
foil takes the shape of the reflected ray. On this material model the students can 
observe obeying of the reflection law, for each of the five reflection points of the 
considered example. 

By highlighting the analogy between the path of a multiply reflected ray and 
the trajectory of a point-like object that collides successively against two 
intersected walls, we can make the transition to study, by building computer 
simulation, the issues in other chapters of Physics [14-15]. The GeoGebra software 
can be used successfully for modelling some mechanics phenomena, so the 
initiation of students by modelling various optical phenomena represents a suitable 
starting point. One of the important goals of physics education is to foster the 
students' understanding of physical concepts by the classic experiment approach 
[16-17] or by simulations with various software [18-21]. 
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