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            Abstract. In the present paper, an effective approach is introduced to overcome the difficulties 
of imposing boundary conditions at infinity, which are used to modelling the boundary layer flow of a 
nanofluid past a stretching sheet. The proposed scheme is mainly based on the Adomian 
decomposition method with an effective procedure to imposing the boundary conditions at infinity. 
On applying the present approach to approximate the solution of a boundary value problem in the 
literature, it is found that only two components of Adomian’s series are sufficient to achieve the same 
accuracy of the homoptopy analysis method using forty iterations. 
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1. INTRODUCTION 

            The Adomian decomposition method (ADM) [1], which gives the solution 
in the form of an infinite series, is an effective method to solve initial/boundary 
value problems for ordinary, partial, and integral equations [2-12]. It has been 
shown that the series solution obtained by the ADM converges to the exact 
solution, when available. Even for a boundary value problem of no available exact 
solution such as the Thomas-Fermi equation, the ADM gives a sequence of 
approximate solutions that converge to a certain function [7]. However, the ADM 
counters some difficulties in solving boundary value problems with boundary 
conditions at infinity. This is because the conditions at infinity cannot be directly 
imposed in the series solution. These kinds of boundary conditions are frequently 
arising in many physical problems and also in the boundary layer flow of 
nanofluids [13-17]. 

To overcome the difficulties of the boundary conditions at infinity, many 
authors have been resorted either to the semi-analytical methods or the Padé 
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technique [18-24]. However, the Padé technique requires a massive computational 
work to obtain the desired accuracy. In addition, it was the main task of many 
mathematicians to searching for a direct approach to effectively deal with the 
boundary condition at infinity. Recently, an approach has been proposed  in  Ref. 
[22] to directly implement the boundary condition at infinity by the ADM. This 
approach depends on obtaining a closed form solution for the governing system 
and then applying the ADM to approximate the physical quantities of interest. The 
objective of this paper is to extend the ADM proposed in [22] to solve the 
boundary-layer flow and heat transfer of nanofluid over a stretching sheet with 
partial slip [24]. Hence, we reinvestigate the problem studied very recently by 
Mabood et al. [24] in which the homotopy analysis method has been used to 
approximate the solutions. Moreover, it will be shown that only two components of 
the Adomian’s series are sufficient to obtain the accuracy of the 40th-order solution 
of the homotopy analysis method. The current analytical results have not been 
reported in earlier works, to the best of our knowledge. The proposed problem is 
finally given by the following set of nonlinear ordinary differential equations [24]:  

 ( ) 0,=)()()()( 2ηηηη ffff ′−′′+′′′                                    (1) 

 ( ) 0,=)()()( )()()(1 2ηθηθηφηθηηθ ′+′′+′+′′ NtNbf
Pr

     (2) 

 0,=)()()()( ηθηφηηφ ′′+′+′′
Nb
NtLef                                   (3) 

subject to the boundary conditions:  
 1,=(0)1,=(0)(0),1=(0)0,=(0) φθλfff ′′+′            (4) 
 0,=)(0,=)(0,=)( ∞∞∞′ φθf                                       (5) 

where Pr , , ,  and Le Nb Nt λ  are Prandtl number, Lewis number, Brownian 
motion parameter, thermophoresis parameter, and partial slip parameter, 
respectively. The exact solution of Eq. (1) with the boundary conditions in (4-5) is 
already well known and given by 
  

                                                    (6) ),(1=)( βηβη −− ef
where β  is a positive real root for the following cubic equation  
 

                                                       (7) 0.=123 −+ βλβ
Hence, Eqs. (2) and (3) become 

[ ] [ ] 0,=)()()( )(1)( 2ηθηθηφβηθ βη ′+′′+−+′′ − PrNtNbePr            (8) 

( ) 0.=)( )(1)( ηθηφβηφ βη ′′+′−+′′ −

Nb
NteLe                                          (9) 
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2. ANALYSIS 

Suppose that ))(1/(=)( ηθη ′z , then Eq. (8) becomes 
 

  [ ] .=)()( )(1)( PrNtzNbePrz ηηφβη βη ′+−−′ −
                                (10) 

 
 By solving this equation for )(ηz  and implementing the above relation we obtain 

)(ηθ′  as  

 .
(0)/

=)(
)]( [

0

)(1

)]( [

σθ
ηθ

σφβσβση

ηφβηβη

dePrNte

e
NbePrNbPr

NbePr

+−+−+−

+−+−

∫+′
′ (11) 

Integration of Eq. (11) yields 
  

.(0) 1ln 11=)( )]( [

0

)(1 ⎟
⎠
⎞⎜

⎝
⎛ ′++ +−+−+ ∫ σθηθ σφβσβση

deePrNt
PrNt

NbePrNbPr (12) 

 
On imposing the boundary condition 0=)(∞θ , we find (0)θ′  as  
 

 .
 

1)(=(0)
1

)]( [

0)(1

−
+−+−∞

+−

−

⎥⎦
⎤

⎢⎣
⎡−′ ∫ σθ σφβσβσ de

ePrNt
e NbePr

NbPr

PrNt

                       (13) 

 
Inserting Eq. (13) into Eq. (12), it then follows  
 

.1)(1ln 11=)(
)]( [

0

)]( [

0

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−++

+−+−∞

+−+−

−

∫
∫

σ

σ
ηθ

σφβσβσ

σφβσβση

de

de
e

PrNt NbePr

NbePr
PrNt             (14) 

 
This explicit relation for )(ηθ  in terms of )(ηφ  shall be used in subsequent 
Sections to derive the exact solutions at particular values of the permanent 
parameters in which the involved integrals can be evaluated analytically. In 
addition, Eq. (7) is also solved for )(ηφ′  as a -order ordinary differential 
equation (ODE) and thus  

st1

,)( =)( )(

0

)()( ξξθμηφ
βξβξηβηβηβηβη dee

Nb
Nte eLeeLeeLe ′′−′

−+−+−−+− ∫      (15) 

where  is a constant to be determined later. By integrating Eq. (15) 
once again with respect to

(0)= φμ ′Lee
η , where 1=(0)φ , we have  
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.)(1=)( )(

0

)(

0

)(

0
σξξθσμηφ

βξβξσβσβσηβσβση
ddee

Nb
Ntde eLeeLeeLe ′′−+

−+−+−−+− ∫∫∫
                                                                                                                      (16) 

 
Now, μ  can be evaluated from the condition at infinity ( 0=)(∞φ ) as  
 

./)(1= )(

0

)(

0

)(

0
⎟
⎠
⎞⎜

⎝
⎛⎟

⎠
⎞

⎜
⎝
⎛ ′′+−

−+−∞−+−+−∞

∫∫∫ σσξξθμ
βσβσβξβξσβσβσ deddee

Nb
Nt eLeeLeeLe

                                                                                                                        (17) 
 

Therefore, )(ηφ  in Eq. (16) becomes  
 

 

⎟
⎠
⎞

⎜
⎝
⎛ ′′+−+

−+−+−∞

−+−∞

−+−

∫∫
∫
∫ σξξθ

σ

σ
ηφ

βξβξσβσβσ
βσβσ

βσβση

ddee
Nb
Nt

de

de
eLeeLe

eLe

eLe

)(11=)( )(

0

)(

0)(

0

)(

0

 

 .)()(

0

)(

0
σξξθ

βξβξσβσβση
ddee

Nb
Nt eLeeLe ′′−

−+−+− ∫∫                       (18) 

 
This expression shall be also used in subsequent Sections to obtain the exact 
solutions at special cases of the physical parameters.  

3. SPECIAL CASES AND EXACT SOLUTIONS 

    In this Section, we discuss the possibility of deriving exact solutions for the 
current physical problem at , . Also, comparisons with the results 
reported in the literature are to be introduced. Setting  into Eq. (14) and 
then taking the limit as , we obtain 

0=Nt

0→Nt

0=Nb
0=Nb

)(ηθ  in a simpler closed form 
expression as  

 ,1=)(
][

0

][

0

σ

σ
ηθ βσβσ

βσβση

de

de
ePr

ePr

−+−∞

−+−

∫
∫−                                        (19) 

 
where β  is the solution of Eq. (7). Following [16], we have  
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 ),, ,( )(1=][

0
PrePrPrPrde PrePr βηβσβση

β
σ −−−+− Γ∫               (20) 

 
where  is the generalized Gamma function. On using the result of (20) 
as 

),,( 10 zzaΓ
∞→η , we have  

 ).,0,( )(1=][

0
PrPrPrde PrePr Γ−−+−∞

∫ β
σ

βσβσ                          (21) 

 
Accordingly, an exact solution for )(ηθ  is obtained as  
 

 .
),0,(

), ,(1=)(
PrPr

PrePrPr
Γ

Γ
−

−βη

ηθ                                             (22) 

 
Since β  mainly depends on λ , then two cases for such a partial slip parameter 
can be addressed as following.  
 

3.1 AT 0=/λ .  

In this case, the solution given by Eq. (22) can be simplified as  
 

 ,
),0,(

) ,0,(=)(
PrPr
ePrPr

Γ
Γ −βη

ηθ                                                        (23) 

 
where the relation between the generalized Gamma function and the incomplete 
Gamma function; ),(),(=),,( 1010 zazazza Γ−ΓΓ  has been used.   
 

3.2 AT 0=λ .  

Substituting 0=λ  into Eq. (7), we find that 1= ±β . By considering the positive 
root and inserting it into Eq. (23), we have  

 

 .
),0,(

) ,0,(=)(
PrPr
ePrPr

Γ
Γ −η

ηθ                                            (24) 
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This analytical expression is valid at any Prantdl number Pr . Differentiating (24) 
with respect to η  at 0=η , we obtain the Nusselt number as 
  

 .
),0,(

)(=(0)
PrPr

ePr PrPr

Γ
′−

−

θ                                            (25) 

 
This expression shall be used in Section 5 to validate the numerical results obtained 
from some numerical and analytical approaches in the literature.  

4. SOLUTION BY ADOMIAN’S METHOD  

The possibility of applying Adomian’s method to obtain the approximate solutions 
for the governing equations is the subject of this Section. According to Adomian’s 
method, the solutions are assumed in a decomposition series form as  

 

                               (26) ).(=)(),(=)(
0=0=

ηφηφηθηθ n
n

n
n

∑∑
∞∞

 
 It is important to note that the second term on the right hand side of Eq. (14) is a 
nonlinear term in φ , which can be decomposed into a series of Adomian’s 
polynomials  as  nA
 

 ,=1)(1ln
0=)]([

0

)]([

0
n

nNbePr

NbePr
PrNt A

de

de
e ∑

∫
∫ ∞

+−+−∞

+−+−

−

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−+

σ

σ
σφβσβσ

σφβσβση

             (27) 

 
 where these  are defined by  nA
 

.1)(1ln
!

1=

0=

)](

0=

[

0

)](
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[

0

λ

σφλβσβσ

σφλβσβσ
η
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λ

⎥
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⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

−+

∑
∫

∑
∫

∞

+−+−
∞

∞

+−+−

−

de

de
e

d
d

n
A

i
i

i

NbePr

i
i

i

NbePr

PrNt
n

n

n    (28) 
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Inserting (27) and (28) into (14) and (18) and applying Adomian’s method, we can 
then set the following system of two-coupled recurrence schemes for )(ηθ  and 

)(ηφ  as 
  

 1,=)(0 ηθ                                                                              (29) 

 ,1=)(1 nn A
NtPr

ηθ +                                                               (30) 

 ,1=)(
)(

0

)(

0
0

σ

σ
ηφ βσβσ

βσβση

de

de
eLe

eLe

−+−∞

−+−

∫
∫−                                               (31) 

 

−
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
′′

−+−+−∞

−+−∞

−+−
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∫
∫ σξξθ

σ

σ
ηφ

βξβξσβσβσ
βσβσ

βσβση

ddee
de

de

Nb
Nt

n
eLeeLe

eLe

eLe

n )(=)( )(

0

)(

0)(

0

)(

0
1  

 

0.,)( )(

0

)(

0
≥′′

−+−+− ∫∫ nddee
Nb
Nt

n
eLeeLe σξξθ

βξβξσβσβση
                   (32) 

 
The recurrence scheme for )(ηφ  can be also simplified and written as  
 

 ,
),0,(

) ,0,(=)(0 LeLe
eLeLe

Γ
Γ −βη

ηφ                                                    (33) 

 

 [ ,)()()(1=)( 01 ηφηφ nnn II
Nb
Nt

−∞−+ ]                                    (34)  

 
where )(ηnI  and  are given by  )(∞nI
 

, )(=)( )(

0

)(

0
σξξθη

βξβξσβσβση
ddeeI n

eLeeLe
n ′′

−+−+− ∫∫                              (35) 

and  

. )(=)( )(

0

)(

0
σξξθ

βξβξσβσβσ ddeeI n
eLeeLe

n ′′

−+−+−∞

∫∫∞                             (36) 

 
The double integrations in (35) and (36) can be further simplified to single 
integrations by changing the order of integration as  
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          (37) . )()(= )()(
000

ξσσξσξξσ
η

ξ

ηση
ddfgddgf ∫∫∫∫

Accordingly, we have  
 

,)( ) , ,( )(1=)( )(

0
ξξθ

β
η βξβηβξβξη

deLeeLeLeeLeI n
eLeLe

n ′′
−−−+− Γ∫    (38) 

 
and hence  

.)( ) ,0,( )(1=)( )(

0
ξξθ

β
βξβξβξ deLeLeeLeI n

eLeLe
n ′′

−−+∞− Γ∞ ∫             (39) 

 
To compute )(0 ηθ , the Adomian polynomial  should be first calculated by 
using formula (28) for , hence  

0A
0=n

 

 ,1)(1ln=
)](0 [

0

)](0 [

0
0

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−+

+−+−∞

+−+−

−

∫
∫

σ

σ
σφβσβσ

σφβσβση

de

de
eA

NbePr

NbePr

PrNt  

 ,1)(1ln=
)] ,0,([

0

)] ,0,([

0

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−+ −ΛΓ+−+−∞

−ΛΓ+−+−

−

∫
∫

σ

σ
βσβσβσ

βσβσβση

de

de
e

eLeLeePr

eLeLeePr
PrNt           (40) 

 
where we have assigned  

 .
),0,(

=
LeLe

Nb
Γ

Λ                                                     (41) 

 
Therefore, the Adomian solution components )(1 ηθ  and )(1 ηφ  are given as  
 

 

,1)(1ln1=)(
)] ,0,([

0

)] ,0,([

0
1

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−+ −ΛΓ+−+−∞

−ΛΓ+−+−

−

∫
∫

σ

σ
ηθ βσβσβσ

βσβσβση

de

de
e

NtPr eLeLeePr

eLeLeePr
PrNt                  (42) 

 0.=)(1 ηφ                                                                             (43) 
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It is clear from (43) that )(1 ηφ  does not contribute to the approximate solution for 
)(ηφ . Thus we have to evaluate )(2 ηφ  from (34) that yields  

 

 [ ,)()()(1=)( 1102 ηφηφ II
Nb
Nt

−∞− ]                                       (44) 

 
where )(1 ηI  and  are evaluated from (38) and (39) for . In view of the 
above analysis, we can write the two-term approximate solution for the temperature 
distribution 

)(1 ∞I

)

1=n

(ηθ  and the three-term approximate solution for the nano-particle 
concentration )(ηφ  as  

 

,1)(1ln11=)(
)] ,0,([

0

)] ,0,([

0

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−++ −ΛΓ+−+−∞

−ΛΓ+−+−

−

∫
∫

σ

σ
ηθ βσβσβσ

βσβσβση

de

de
e

NtPr eLeLeePr

eLeLeePr
PrNt              (45) 

 

 [ .)()()(1=)( 1100 ηφφηφ II
Nb
Nt

−∞−+ ]                                  (46) 

 
Here, it is important to mention that the integrals involved in (45) reduce to the 
following exact expression, when ν== LePr , say  
 

 

⎥⎦
⎤

⎢⎣
⎡ −

Λ
ΛΓ−−ΛΓ−

−−−ΛΓ+−+−∫ ),0,() ,0,(
1

)] ,0,([

0
= νννβηννν

νβσβσβση

β
νσ eede eeLeLeePr  

 .= ) ,0,(
1

⎥⎦
⎤

⎢⎣
⎡ −

Λ
−−ΛΓ−

−−
Nbe ee νβηννν

ν

β
ν

                                           (47) 

 
Therefore, the closed-form solution given by (45) reduces to the following exact 
expression, when ν== LePr ,  

,
1

1)(1ln11=)(
) ,0,(

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

−
−

−++ −

−−ΛΓ−
−

Nb

Nbe
Nt

e
eee

Nt ν

νβηννν
ν

ν
ηθ                   (48) 

 
where 0=),0,( ννΓ  was used to obtain the last expression. It is obvious that the 
obtained approximate solutions satisfy the given boundary conditions. 
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5. NUMERICAL VALIDATION 

This Section is devoted to compare between the present results and the 
corresponding results in the literature at the same values of the selected parameters. 
In Table 1, comparisons of the present exact numerical results for ( )(0)θ ′−  at 
different values of Pr , when 0= 0,= 0,= λNbNt , with those obtained in [12, 
25-27] are presented. It is clear from Table 1 that the results reported in the 
literature  coincide with the present numerical values in most cases. However, the 
value of ( (0))θ ′−

−

 obtained in [12] by using the homotopy analysis method when 
 may be not accurate enough, where it agrees the current exact value up 

to only two decimal places. In addition, the calculated value obtained in [27] may 
need some revisions because it was completely different than the current exact 
value and also than those in references [12], [25], and [26]. Moreover, the values of 
the skin friction (  are calculated by using the exact solution given by Eqs. 
(6-7) and compared in Table 2 with those obtained in [14] and [24] by using the 
homotopy analysis method at different values of 

0.7=Pr

)(0)f ′′

λ .  
Figure 1 displays the variation of β  against λ . It seems from Fig. 1 that β  

is always positive for all values of λ . However, before commenting on the 
obtained results it should be noted that the present analytical solution (6-7) is valid 

only when 
33

2
≥λ . In view of the current exact solution for the -equation, it 

can be concluded from Table 2 that the present results of the skin 
friction  agree with those obtained by Noghrehabadi et al. [14] and by 
Mabood et al. [24] up to five or six decimal places. On the other hand, to stand on 
the accuracy of Adomian’s method, the approximate solutions given by Eqs. (45-
46) and Eq. (48) are used to conduct several numerical results for 

f

( (0)f ′′− )

( )(0)θ ′−  and 
( )(0)φ′− , which are then compared with the available results in the literature at 
various values of λ , , and  when Nt Nb 10== =νLePr .  

It is seen from Table 3 that the current numerical results obtained by 
applying the ADM are in full agreement with the corresponding ones in [14] and 
[24] by using the homotopy analysis method. Therefore, the 2-term approximate 
solution of Adomian’s method has achieved similar accuracy of the 40-term 
approximate solution of the homotopy analysis method. 
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Table 1 

 Comparison of results for ( )( )0'θ− at .0,0,0 === NbNtλ  
 

Pr Khan and Pop [25 ] Wang [26 ] Gorla and 
Sidawi [27 ] 

Hassani et al. 
[12] 

Present results 

0.07 0.0663 0.0656 0.0656 - 0.0655625 

0.20 0.1691 0.1691 0.1691 0.1692 0.169089 

0.70 0.4539 0.4539 0.5349 0.4582 0.453916 

2.00 0.9113  0.9114       0.9114        0.9114 0.911358 

7.00 1.8954 1.8954 1.8905 1.8956 1.895403 

20.00 3.3539 3.3539 3.3539 3.3539    3.353904 

70.00 6.4621  6.4622       6.4622        6.4623    6.462199 

 
 
 

Table 2 

Comparison of results for ( )( )0''f−  at different values for .λ  

 
λ  Noghrehabadi et al.[14] Mabood  et al. [24 ] Present results 

0.1 0.872082 0.872082 0.87208247 

0.3 0.701548 0.701548 0.70154821 

0.5 0.591195 0.591195 0.59119548 

1.0 0.430160 0.430160 0.43015971 

2.0 0.283980 0.283981 0.28397959 

 5.0 0.144841 0.144843 0.14484019 

 10. 0.081243 0.081246 0.08124198 
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Table 3 

Comparison of results for ( )( )0'θ−  and ( )( )0'φ−  at .10Pr === Leν  
 

( )( )0'θ−  ( )( )0'φ−  λ  Nb Nt 
      [14] H A M  

[24] 
Present 
(ADM) 

[14] H A M  [24] Present 
(ADM) 

0.5 0.2 0.1 0.424328 0.424328 0.42432776 1.999070 1.999072 1.99907252 

  0.2 0.306640 0.306640 0.30664021 2.110990 2.110993 2.11099348 

  0.3 0.229206 0.229207 0.22920659 2.228691 2.228691 2.22869197 

1.0 0.3 0.1 0.190347 0.190346 0.19034699 1.819268 1.819267 1.81926938 

  0.2 0.137084 0.137084 0.13708403 1.898513 1.898513 1.89851463 

  0.3 0.102297 0.102297 0.1 229664 0 1.969337 1.969337 1.96933898 

 
 

 

 

0 20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

1.0

 
Figure 1. Variation of β  against λ . 
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Figure 2. Effect of slip factor on dimensionless temperature at 10Pr == Le and . 2.0== NtNb
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Figure 3. Effect of slip factor on dimensionless concentration at 10Pr == Le and . 2.0== NtNb
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Figure 4. Effect of Prandtl number on dimensionless temperature at 5,1 == Leλ and          
1.0== NtNb . 
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Figure 5. Effect of Lewis number on dimensionless concentration at 5,1 == Leλ and          
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In Figs. (2-5), the 2-term approximate solutions of the dependent similarity 
variables )(ηθ  and )(ηφ  are depicted at the same selected values of the physical 
parameters chosen in [24]. However, without repeating the physical interpretation 
of the effects of these parameters on the variation of )(ηθ  and )(ηφ , it is 
observed that the results depicted in these figures are very close or may be identical 
to those obtained by [24] by using the 40-term approximate solution of the 
homotopy analysis method. In view of these comparisons, it may be concluded that 
Adomian’s method requires less computational work when compared with the 
homotopy analysis method. Finaly, the present analysis may be extended to cover 
many scientific models in computational physics [28-35]. 

6. CONCLUSIONS 

In this paper, an approach is proposed by using the ADM to solve a system of 
coupled  nonlinear ordinary differential equations describing boundary layer flow 
of a nanofluid with partial slip over a stretching sheet. The obtained approximate 
analytical solutions were expressed in terms of the generalized incomplete Gamma 
function. The present analysis directly used the boundary conditions at infinity. In 
addition, the current numerical results coincide with those obtained by applying the 
homotopy analysis method in Ref. [24] by using forty iterations. Therefore, the 
ADM requires less computational work, which is the main advantage of this 
method. 
 

ACKNOWLEDGEMENTS 

The authors would like to thank the deanship of scientific research of Majmaah 
niversity for the financial grant received for conducting this research (project 
umber 25/37). 

U
n
 

 
REFERENCES 

1. G. Adomian, Solving Frontier Problems of Physics: The Decomposition Method, Kluwer Acad., 
Boston, 1994. 
2. A. M. Wazwaz, Appl. Math. Comput., 166, 652–663  (2005). 
3. N.T. Eldabe, E.M. Elghazy, and A. Ebaid, Phys. Lett. A., 363, 257–258 (2007). 
4. A. M. Wazwaz, Appl. Math. Comput., 216, 1304–1309  (2010). 
5. A. Ebaid, Z. Naturforschung A, 66, 423–426  (2011). 
6. J. S. Duan and R. Rach, Appl. Math. Comput., 218, 4090–4118 (2011). 
7. A. Ebaid, J. Comput. Appl. Math., 235, 1914–1924 (2011). 
8. M. Sheikholeslami, D. D. Ganji, and H. R. Ashorynejad, Powder Technol., 239, 259–265 (2013). 
9. A. M. Wazwaz, R. Rach, and J. S. Duan, Appl. Math. Comput., 219 (10), 5004–5019 (2013). 
10. A. Ebaid, Comput. Math. Meth. Medic., 2013, 547954 (2013). 

 



 A. Gaber, A. Ebaid 16 

11. A. Alshaery and A. Ebaid, Acta Astronautica, 140, 27–33 (2017). 
12. M. Hassani, M. Mohammad Tabar, H. Nemati, G. Domairry, and F. Noori, Int. J. Therm. Sci., 50,  
2256–2263 (2011). 
13. O. D. Makinde and A. Aziz, Int. J. Therm. Sci., 50, 1326–1332 (2011). 
14. A. Noghrehabadi, R. Pourrajab, and M. Ghalambaz, Int. J. Therm. Sci., 54, 253–261 (2012). 
15. A. Ebaid, F. Al Mutairi, and S. M. Khaled, Advances in Mathematical Physics, 2014, 538950 
(2014). 
16. A. Ebaid and M.A. Al Sharif, Zeitschrift für Naturforschung A, 70 (6), 471–475 (2015). 
17. F. Mabood, W. A. Khan, and A. I. M. Ismail, J. Magnetism and Magnetic Materials, 374, 569–
576 (2015). 
18. J. P. Boyd, Computers in Physics, 11 (3), 299–303 (1997). 
19. A. M. Wazwaz, Appl. Math. Comput., 105 (1), 11–19 (1999). 
20. A.M. Wazwaz, Appl. Math. Comput., 177 (2), 737–744 (2006). 
21. A. M. Wazwaz, Appl. Math. Comput., 182 (2), 1812–1818 (2006). 
22. A. Ebaid, M. D. Aljoufi, and A. M. Wazwaz, Appl. Math. Lett., 46, 117–122 (2015). 
23. N. Ishfaq, Z.H. Khan, W. A. Khan, and R. J. Culham, J. Hydrodynamics, 28(4), 596–602 (2016). 
24. F. Mabood, W. A. Khan, and M. M. Rashidi, Thermal Science, 21(1A), 289–301 (2017). 
25. W. A. Khan and I. Pop, Int. J. Heat Mass Transfer, 53, 2477–2483 (2010). 
26. C. Y. Wang, J. Appl. Math. Mech. (ZAMM), 69, 418–420 (1989). 
27. R. S. R. Gorla and I. Sidawi, Appl. Sci. Res. 52, 247–257  (1994). 
28. I. A. Cristescu, Rom. Rep. Phys., 68, 473–485 (2016). 
29. I. A. Cristescu, Rom. Rep. Phys., 68, 962–978 (2016). 
30. A. H. Bhrawy, Proc. Romanian Acad. A, 17, 39–47 (2016). 
31. A. H. Bhrawy, M. A. Zaky, and M. Abdel-Aty, Proc. Romanian Acad. A, 18, 17–24 (2017). 
32. I. A. Cristescu, Rom. J. Phys., 62, 103 (2017). 
33. R. M. Hafez, E. H. Doha, A. H. Bhrawy, and D. Baleanu, Rom. J. Phys., 62, 111 (2017). 
34. K. Parand, H. Yousefi, and M. Delkhosh, Rom. J. Phys., 62, 104 (2017). 
35. A. M. Wazwaz et al., Rom. Rep. Phys., 69, 102 (2017). 
  


	 ANALYTICAL STUDY ON THE SLIP FLOW AND HEAT TRANSFER OF NANOFLUIDS OVER A STRETCHING SHEET USING ADOMIAN’S METHOD 
	1. INTRODUCTION
	2. ANALYSIS
	3. SPECIAL CASES AND EXACT SOLUTIONS
	3.1 AT. 
	3.2 AT. 

	4. SOLUTION BY ADOMIAN’S METHOD 
	5. NUMERICAL VALIDATION
	Table 1
	Table 2
	Table 3

	6. CONCLUSIONS


