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Abstract. The principal purpose of the present article is to examine a fractional
model of convective radial fins having constant and temperature-dependent thermal
conductivity. In order to solve fractional order energy balance equation, a numerical
algorithm namely homotopy analysis transform method is considered. The fin temper-
ature is derived in terms of thermo-geometric fin parameter. Our method is not limited
to the use of a small parameter, such as in the standard perturbation technique. The
numerical simulation for temperature and fin tip temperature are presented graphically.
The results can be used in thermal design to consider radial fins having both constant
and temperature-dependent thermal conductivity.

Key words: Thermal conductivity, Radial fins, Fractional energy balance equa-
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1. INTRODUCTION

Fins find their uses in different directions of scientific and technological fields
such as air-conditioning systems, chemical processing equipments, heat exchangers
etc. They are commonly designed for increasing heat transfer between base surface
and its environment. There are different techniques to enhance convective heat trans-
fer rate such as increasing heat transfer surface area or heat transfer coefficient. It is
well known that the surface area of heat transfer can be increased by attaching the
fins made of highly conductive materials on base surface. Furthermore, fin material
should have highly thermal conductivity to control the temperature variation from
base surface to the tip surfaces of the fin. Linear differential equations are used to
describe the convective fins having constant thermal conductivity and temperature
distribution of a straight fin [1]. It is well known that the thermal conductivity highly
depends on the temperature. The temperature-dependent thermal conductivity can
be described in terms of a linear function of the temperature for many scientific and
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technological processes [2, 3]. Whenever the big temperature gradient exists, then the
temperature-dependent thermal conductivity is highly significant and this results in
less/more energy transfer. The temperature-dependent thermal conductivity is mod-
eled via nonlinear differential equations [4, 5]. The nonlinear fin problem has gained
highly attention of scientists and engineers due to its industrial importance and uses
in semiconductors, heat exchangers, power generators, electronic components etc.
[6]. In this connection, Bartas and Sellers [7] examined the heat-rejecting system
made of parallel tubes combined by web plates. Furthermore, Coskun and Atay [8]
analyzed the convective straight and radial fins having temperature-dependent ther-
mal conductivity with the aid of variational iteration techniques. Cuce and Cuce
[9] examined the temperature and fin efficiency of convective straight fines having
temperature-dependent thermal conductivity by application of homotopy perturba-
tion scheme. Chiu and Chen [10] investigated the convective-radiative fins by making
use of Adomian’s decomposition procedure [11]. Arslanturk [12] made an investi-
gation of optimum design of space radiators having temperature-dependent thermal
conductivity with the help of Adomian’s decomposition technique. Patra and Ray
[13] analyzed the convective radial fins having temperature-dependent thermal con-
ductivity with the aid of homotopy perturbation Sumudu transform approach.

The fractional model of nonlinear equations is useful and it models the
temperature-dependent thermal conductivity in a better and systematic manner. It
is well known that the future state of a dynamical system depends not only on its
present state but also on its past memory. So, the mathematical modeling by the aid
of fractional derivatives is more realistic and that is why fractional approaches have
gained more and more attention of scientists and engineers. In this connection one
can refer the work of Hilfer [14], Mainardi et al. [15], Podlubny [16], Caputo [17],
Baleanu et al. [18], Kilbas et al. [19], Kumar et al. [20], Singh et al. [21], Ma et al.
[22], Agila et al. [23], Abdelkawy et al. [24], and Bhrawy et al. [25]; see also the
recent relevant works [26]-[34]. It is very hard to handle the nonlinear problems of
fractional orders. In order to solve such nonlinear problems Liao [35–37] discovered
and developed the homotopy analysis method (HAM). The HAM has been success-
fully employed to study various physical phenomena such as fractional model of
Black-Scholes equation describing financial markets [38], generalized second-grade
fluid fast porous plate [39], Kawahara equation [40], nonlinear Poisson equation [41]
etc. The integral transform techniques, specially the Laplace transform, constitute ef-
ficient schemes to obtain the solutions of linear differential equations. It is observed
that merging of semi-analytical techniques with Laplace transform is very efficient
and gives the solution of nonlinear problems in less time. Currently, many math-
ematicians and engineers have tried to solve the nonlinear equations by employing
various schemes merged with the Laplace transform. The merger of Laplace trans-
form and Adomian’s decomposition method is used to handle nonlinear differential
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equations [42], nonlinear integral equations [43] etc. The homotopy perturbation
technique is also merged to investigate nonlinear exponential boundary layer equa-
tion [44], advection problem [45], fractional Fornberg-Whitham equation [46] etc.
In another attempt, the HAM is also merged with Laplace transform algorithm to an-
alyze the nonlinear boundary value problem on semi-infinite domain [47], nonlinear
fractional shock wave equation [48], fractional models occurring in unidirectional
propagation of long waves through dispersive medium [49] etc.

Nowadays, it is very important and useful to analyze the heat transfer in ex-
tended surface and related issues with high accuracy because of growing importance
of high performance heat transfer surfaces having lower weights, volumes, initial
conditions and handling cost of systems.

In the present paper, we examine the suitability and effectiveness of the homo-
topy analysis transform method (HATM) to find the solution of the fractional model
of energy balance equation. Further, we obtain the temperature and fin temperature
of convective radial fins having thermal conductivity. The HATM is a merging of
HAM, Laplace transform technique, and homotopy polynomials. The proposed tech-
nique is free from a small parameter, because it contains an auxiliary parameter ~ by
which we can insure the convergence of series solution and it contains the results
obtained by using Adomian decomposition method (ADM), variational interation
method (VIM), and homotopy perturbation Sumudu transform method (HPSTM) as
particular cases. The plan of the present article is as follows. The basic definitions of
calculus of fractional order are discussed in Sec. 2. Section 3 presents the fractional
model of convective radial fins having temperature-dependent thermal conductivity.
In Sec. 4, we illustrate the applicability of HATM to find the solution of the energy
balance equation of fractional order. Section 5 is dedicated to numerical results and
discussion. Lastly, the concluding remarks are given in Sec. 6.

2. BASIC DEFINITIONS OF FRACTIONAL CALCULUS AND LAPLACE TRANSFORM

Here we present the following basic definitions related to fractional calculus
and Laplace transform.

Definition 1. The integral of fractional order β > 0, of a function θ(η) ∈
Cµ,µ≥−1in Riemann-Liouville sense is defined as [16]:

Jβθ(η) =
1

Γ(β)

∫ η

0
(η− τ)β−1θ(τ)dτ, (β > 0), (1)

J0θ(η) = θ(η). (2)

Definition 2. The fractional order derivative of θ(η) defined by Caputo [17] is
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given in the following form:

Dβθ(η) = Jn−βDnθ(η) =
1

Γ(n−β)

∫ η

0
(η− τ)n−β−1θ(n)(τ)dτ, (3)

for n−1< β ≤ n, n ∈N, η > 0.
Definition 3. If θ(η) is a function, then the Laplace transform formula for

Dβθ(η) is given by [17, 19]

L [Dβθ(η)] = pβL[θ(η)] −
n−1∑
r=0

pβ−r−1 θ(r)(0 + ), (n −1 < β ≤ n) . (4)

3. CONVECTIVE RADIAL FINS HAVING TEMPERATURE-DEPENDENT THERMAL
CONDUCTIVITY

Here we consider the heat pipe/fin space radiator as represented in Fig. 1. Both
surfaces of the fin are radiating to the outer space at a very low temperature, which is
considered equal to zero absolute. The temperature-dependent thermal conductivity
of fin k is a linear function of temperature and the fin is diffuse-grey with emissivity
ε. It is assumed that the tube surfaces temperature and the base temperature Tb of
the fin are constant, and the radiative exchange between the fin and the heat pipe
is negligible. The temperature distribution within the fin is considered to be one
dimensional, as the fin is considered to be thin. Therefore, only fin tip length b is
assumed as the domain of computation [8].

Fig. 1 – Schematic view of the problem.

The mathematical model of a differential element is described via energy bal-
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ance equation presented in the following form

2w
d

dx

[
k(T )

dT

dx

]
−2εσT 4 = 0. (5)

In the above equation k(T ) represents the thermal conductivity and σ denotes the
Stefan-Boltzman constant. It is assumed that the thermal conductivity of the fin
material is presented by the following relation

k(T ) = kb [1 +λ(T −Tb)] . (6)

In Eq. (6) kb indicates the thermal conductivity of the fin at the base temperature
and λ stands for the slope of the curve drawn between thermal conductivity and
temperature.

To solve Eq. (5), we use the subsequent dimensionless variables

θ =
T

Tb
,η =

x

b
,α= λTb, and ψ =

εσb2T 3
b

kbw
. (7)

Then Eq. (5) reduces to the following form

d2θ

dη2
+αθ

d2θ

dη2
+α

(
dθ

dη

)2

−ψθ4,0≤ η ≤ 1 (8)

with the boundary conditions

dθ

dη

∣∣∣∣
η=0

and θ|η=1 = 1. (9)

Replacing the derivative d2θ/dη2 in (8) by a fractional derivative of any kind
(Riemann-Liouville, Caputo or any other) we may convert (8) to a fractional version
of the energy balance equation. In the context of the introductory analysis we assume
the case when the fractional order derivative is termed in Caputo sense, namely

dβθ

dηβ
+αθ

d2θ

dη2
+α

(
dθ

dη

)2

−ψθ4,0≤ η ≤ 1 (10)

along with the boundary conditions (9).
The rate of heat transfer from the radial fins is obtained with the help of New-

ton’s law of cooling

Q=

∫ b

0
P (T −Ta)dx. (11)

The ratio of the actual heat transfer from the fin surface to ideal heat transfer from
the fins, if the fins are completely present in base temperature, is known as the fin
efficiency

µ=
Q

Qideal
=

∫ b
0 P (T −Ta)dx
Pb(Tb−Ta)dx

=

∫ 1

0
θ(η)dη. (12)
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4. HATM FOR NONLINEAR FRACTIONAL ENERGY BALANCE EQUATION

Initially, we apply the Laplace transform on fractional energy balance equation
(10) and it gives the result

L[θ(η)]−K
p

+
1

pβ
L

[
αθ
d2θ

dη2
+α

(
dθ

dη

)2

−ψθ4
]

= 0. (13)

In view of HAM, we define and represent the nonlinear operator as

N [φ(η;q)] = L[φ(η;q)]−K
p

+
1

pβ
L

[
αφ(η;q)

d2φ(η;q)

dη2
+α

(
dφ(η;q)

dη

)2

−ψφ4(η;q)

]
. (14)

In Eq. (14) 0≤ q ≤ 1 is indicating a parameter known as embedding parameter
and the expression φ(η;q) is representing a function of variables η and q. Now with
the help of HAM [35–37], the homotopy is constructed as

(1− q)L [φ(η ;q)−θ0(η)] = ~qA(η)N [φ(η ;q)]. (15)

In the above expression L indicates the Laplace transform operator, A(η) 6= 0 indi-
cates an auxiliary function, ~ 6= 0 stands for an auxiliary parameter, and θ0(η) denotes
an initial guess of θ(η). If we set q = 0 and q = 1, it gives the results:

φ(η;0) = θ0(η), φ(η ;1) = θ(η), (16)

respectively. We can see that as the values of q increases from 0 to 1, the solution
φ(η ;q) changes from θ0(η) to the solution θ(η) of the fractional order energy balance
equation. If φ(η ;q) is expressed in series form about q by the aid of Taylor’s theorem,
it yields

φ(η ;q) = θ0(η) +

∞∑
m=1

θm(η)qm, (17)

where

θm(η) =
1

m !

∂mφ(η ;q)

∂qm
|q=0. (18)

If we select the ~ and A(η) in proper way, the series (17) converges at q = 1,
then we get the result

θ(η) = θ0(η) +

∞∑
m=1

θm(η). (19)

The above Eq. (19) must be one of the solutions of the fractional energy balance Eq.
(10). Now, we differentiate the Eq. (15) m-times with respect to q and further the
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resulting equation is divided by m!, and lastly letting q = 0, it gives the subsequent
deformation equation of mth-order:

L [θm(η)−χmθm−1(η)] = ~A(η)<m(~θm−1). (20)

Now using the inversion of Laplace transform operator on Eq. (20), it yields

θm(η) = χmθm−1(η) +~L−1[A(η)<m(~θm−1)]. (21)

In Eq. (21), the value of χm is given as

χm = 0, if m≤ 1 and χm = 1, if m > 1 (22)

and <m(~θm−1) is presented as

<m(~θm−1) = L[θm−1(η)]− (1−χm)
K

p

+
1

pβ

[
αB

′
m−1(θ0,θ1, ...,θm−1) +αB

′′
m−1(θ0,θ1, ...,θm−1)−ψB

′′′
m−1(θ0,θ1, ...,θm−1

]
.

(23)
In Eq. (23) B

′
m, B

′′
m, and B

′′′
m are the homotopy polynomials [50] given in the fol-

lowing form

B
′
m =

1

Γ(m)

[
∂m

∂qm

(
φ(η;q)

d2φ(η;q)

dη2

)]
q=0

, (24)

B
′′
m =

1

Γ(m)

[
∂m

∂qm

(
dφ(η;q)

dη

)2
]
q=0

, (25)

B
′′′
m =

1

Γ(m)

[
∂m

∂qm
φ4(η;q)

]
q=0

, (26)

and
φ(η,q) = φ0 + qφ1 + q2φ2 + · · · . (27)

Now using the initial approximation θ0(η) =K and recursive relation (21), we
get the following components of the series solution:

θ1(η) =−~ ψK
4ηβ

Γ(β+ 1)
, (28)

...
Similarly, by using of the above process, the components θm,m ≥ 0 of the HATM
solution can be found and consequently the solution can be completely obtained.

Lastly, the HATM solution is presented by the truncated series

θ(η) = lim
N→∞

N∑
m=0

θm(η). (29)
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Table 1

Comparative study between ADM [4], VIM [8], HPSTM [13], and HATM for the temperature

distribution within the fin when α= 0, ψ = 0.2, and β = 2.

η ADM [4] VIM [8] HPSTM [13] HATM
0.0 0.923254 0.923321 0.924241 0.9232805443
0.1 0.923981 0.924048 0.924971 0.9240075916
0.2 0.926166 0.926234 0.927165 0.9261933235
0.3 0.929824 0.929893 0.930832 0.9298515954
0.4 0.934978 0.935048 0.935991 0.9350057886
0.5 0.941661 0.941732 0.942665 0.9416892413
0.6 0.949917 0.949988 0.950885 0.9499458541
0.7 0.959803 0.959871 0.960685 0.9598308679
0.8 0.97188 0.971446 0.972107 0.9714118144
0.9 0.984753 0.984792 0.985196 0.9847696396
1.0 1 1 1 1

5. NUMERICAL RESULTS AND DISCUSSIONS

The present part of this article is dedicated to the numerical simulation for di-
mensionless temperature distribution θ(η) and dimensionless fin temperatureK. The
comparative study of the obtained results for dimensionless temperature distribution
by using different methodologies is presented in Tables 1 and 2.

From Tables 1 and 2, it can be easily observed that the results derived by the
application of present technique are in a good agreement with the outcomes existing
in the literature. The numerical simulations conducted by employing the HATM for
dimensionless temperature distribution θ(η) for different values of β, ψ, and α are
depicted in Figs. 2-4, respectively. From Fig. 2, we can observe that as the value of
order of time-derivative β increases, the value of temperature θ(η) increases. From
Fig. 3, it can be noticed that as the value of thermo-geometric fin parameter ψ in-
creases, then the corresponding value of temperature θ(η) decreases. It is worth
mentioning that as the value of α increases, then the corresponding value of temper-
ature θ(η) increases; see Fig. 4. The numerical simulations for the dimensionless
fin temperature K for different values of β and α are represented in Figs. 5 and 6,
respectively. From Fig. 5, it can be noticed that as the value of β increases, the fin
temperature K increases. Figure 6 indicates that as the value of thermal conduc-
tivity parameter α increases, then the corresponding value of the fin temperature K
increases.
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Table 2

Comparative study between ADM [4], VIM [8], HPSTM [13], and HATM for the temperature

distribution within the fin when α= 0, ψ = 0.5, and β = 2.

η ADM [4] VIM [8] HPSTM [13] HATM
0.0 0.852369 0.852776 0.853142 0.8525753653
0.1 0.853690 0.854101 0.854468 0.8538976349
0.2 0.857669 0.858087 0.858468 0.8578809172
0.3 0.864357 0.864787 0.865204 0.8645752409
0.4 0.873839 0.874285 0.874775 0.8740660170
0.5 0.886240 0.886704 0.887313 0.8864770816
0.6 0.901730 0.902205 0.90297 0.9019749578
0.7 0.920529 0.920996 0.921913 0.9207743353
0.8 0.942920 0.943336 0.944306 0.9431447651
0.9 0.969261 0.969543 0.970296 0.9694185748
1.0 1 1 1 1

Fig. 2 – Plots of the dimensionless temperature distribution θ(η) of radial fins vs. η for various values
of β at α= 0.5,ψ = 1, and h=−1
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Fig. 3 – Response of the dimensionless temperature distribution θ(η) of radial fins corresponding to η
for various values of ψ at α= 0.5, β = 2, and h=−1.

Fig. 4 – Behavior of the dimensionless temperature distribution θ(η) of radial fins vs. η for different
values of α at ψ = 1, β = 2, and h=−1.
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Fig. 5 – Variation of the fin temperature K vs. ψ for different values of β at α= 0.2 and h=−1.

Fig. 6 – Variation of the fin temperature K vs. ψ for different values of α at β = 2 and h=−1.
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6. CONCLUDING REMARKS

In this work, the fractional model of convective radial fins having constant
and temperature-dependent thermal conductivity is successfully examined. The frac-
tional energy balance equation is solved by using HATM. The HATM is a very ef-
fective computational technique to analyze nonlinear equations of fractional order.
The HATM involves an auxiliary parameter ~ and by using this parameter we can
insure the convergence of the solutions. We also analyzed the fractional energy bal-
ance equation and related issues. The numerical simulations for the dimensionless
temperature distribution θ(η) and the dimensionless fin temperature K are shown
graphically and indicate that the order of derivative and the thermo-geometric fin
parameter ψ significantly affects the temperature and fin temperature profiles. The
outcomes of the present study are very useful for scientists and engineers working
with the heat conduction problems having strong nonlinearities. Hence, we can con-
clude that the suggested technique is very powerful and efficient to investigate the
nonlinear fractional equations and fractional models describing the real world prob-
lems in a better and systematic manner.
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