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Abstract. The fractal physics is an important research domain due to its scaling
properties that can be seen everywhere in the nature. In this work, the generalized
Maxwell’s equations are given using fractal differential equations on the Cantor cubes
and the electric field for the fractal charge distribution is derived. Moreover, the fractal
heat equation is defined, which can be an adequate mathematical model for describing
the flowing of the heat energy in fractal media. The suggested models are solved and
the plots of the corresponding solutions are presented. A few illustrative examples are
given to demonstrate the application of the obtained results in solving diverse physical
problems.

Key words: Fractal heat equation, fractal wave equation, fractal calculus, fractal
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1. INTRODUCTION

Fractional calculus is an old topic but now it has found many applications in
science and engineering [1–6]. Fractional differential equations have been solved
using numerical methods [1]. The classical mechanics involves fractional derivatives
used to model non-conservative systems [2, 4, 5]. The fractional calculus is used to
model a series of physical processes on the fractal spaces and curves. The fractional
derivatives on real-line are non-local and for the case of small orders near the zero
violate the causality principle in physics [6]. The fractional derivatives are suitable to
model the processes with memory effects [7]. The anomalous diffusion is modeled
by fractional derivatives in Refs. [8, 9]. Recently, new fractional derivatives with-
out singular kernel are defined and applied in thermodynamics [10, 11]. The fractal
geometry is a new subject and has many applications in the real world [12]-[20].
The fractal analysis using different methods was applied in many branches of sci-
ence and engineering [13–15]. In many relevant papers, the fractal calculus was built
and applied in solving a lot of physics problems [16–26]. The Maxwell’s equations
are generalized involving fractal local derivatives as a new framework for the electro-
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magnetic theory [27]. The fractal Fourier transformation is used to model Fraunhofer
diffraction from Cantor set grating [28]. New non-local derivatives are defined on
fractal sets that can be used in constructing a mathematical model for the physical
processes with memory effects [29, 30].

The plan of the paper is as follows. In Sec. 2 we study and define the mathemat-
ical tools we need in the paper. The generalized fractal calculus on the Cantor cubes
is handled to obtain Maxwell’s equations on the Cantor cubes in Sec. 3. The wave
and heat equations on the fractal Cantor cubes time-space are given in Sec. 4 and
Sec. 5, respectively. In Sec. 6 we have solved illustrative examples as applications
in physics settings. Finally, we give our conclusions in Sec. 7.

2. BASIC TOOLS IN THE FRACTAL CALCULUS

In this Section, we define some of the basic definition in Fα-calculus on the
Cantor cubes .

2.1. THE INTEGRAL STAIRCASE ON CANTOR CUBES

Let F be the triadic Cantor set [16, 28]. We define F = F ×F ×F ⊂ <3 as a
fractal Cantor cubes set that is the subset of I = [a,b]× [c,d]× [e,f ], a, b, c, e, f ∈<
(Real-line). We plot the Cantor cubes with fractal dimension log8

log3
in Fig. 1. The

Fig. 1 – The finite iterations that create the fractal Cantor cubes F.

flag function for F is defined as

Θ(F, I) =

{
1 if F∩ I 6= ∅
0 otherwise.

(1)

Let us consider a subdivision of I = [a,b]× [c,d]× [e,f ] as follows

P[a,b]×[c,d]×[e,f ] = {x0 = a,x1,x2, ...,xn = b}×{y0 = c,y1,y2, ...,yn = d}
×{z0 = e,z1,z2, ...,zn = f} (2)

(c) 2017 RRP 69(0) 109 - v.2.0*2017.5.8 —ATG



3 Heat and Maxwell’s equations on Cantor cubes Article no. 109

We define γξ(F,a,b,c,d,e,f) the mass function as

γξ(F,a,b,c,d,e,f) = lim
δ→0

inf
P[a,b]×[c,d]×[e,f ]:|P |≤δ

n∑
i=1

(xi−xi−1)α
Γ(α+ 1)

(yi−yi−1)β
Γ(β+ 1)

(zi−zi−1)µ
Γ(µ+ 1)

×Θ(F, [xi−1,xi])Θ(F, [yi−1,yi])Θ(F, [zi−1,zi]), (3)

where ξ = α+β+µ and 0 < α ≤ 1, 0 < β ≤ 1, 0 < µ ≤ 1. So that for the case of
fractal Cantor cubes we have ξ = 0.6 + 0.6 + 0.6 = 1.8.
The integral staircase function for the fractal Cantor cubes SξF(x,y,z) of order ξ for
a fractal set F is defined

SξF(x,y,z) =

{
γξ(F,a0, c0,e0,x,y,z) if x≥ a0, y ≥ c0, z ≥ e0
−γξ(F,a0, c0,e0,x,y,z) otherwise,

(4)

where a0, c0, e0 are arbitrary real numbers. The integral staircase shape is drawn
for the fractal Cantor cubes in Fig. 2. The ξ-dimension of F∩ [a,b]× [c,d]× [e,f ] is

Fig. 2 – The integral staircase S1.8
F (x,y,z) is presented for the fractal Cantor cubes F with dimension

log8
log3

.

defined as

dimξ(F∩ [a,b]× [c,d]× [e,f ]) = inf{ξ : γξ(F,a,b,c,d,e,f) = 0} (5)

= sup{ξ : γξ(F,a,b,c,d,e,f) =∞} (6)
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A point (x,y,z) is a point of change of a f(x,y,z) if it is not constant over any
open set (a,b)× (c,d)× (e,f) involving (x,y,z). The set of all points of change of a
function is denoted by Schf . The Sch(SξF(x,y,z)) is called ξ-perfect if SξF(x,y,z)
is finite for all (x,y,z) ∈ <.

2.2. F ξ-INTEGRATION

Consider f(x,y,z) as a bounded function on F so we define

M [f,F, I] =

{
supx∈F∩I f(x,y,z), if F∩ I 6= 0;
0, otherwise.

(7)

and similarly

m[f,F, I] =

{
infx∈F∩I f(x,y,z), if F∩ I 6= 0;
0, otherwise.

(8)

Now, we define the upper U ξ-sum and the lower Lξ-sum for function f(x,y,z) on
the subdivision P as [16, 28].

U ξ[f,F,P ] =
∑n

i=1M [f,F, [(xi−1,yi−1,zi−1),(xi,yi,zi)]] (9)

×(SξF(xi,yi,zi)−SξF(xi−1,yi−1,zi−1)),

and

Lξ[f,F,P ] =
∑n

i=1m[f,F, [(xi−1,yi−1,zi−1),(xi,yi,zi)]] (10)

×(SξF(xi,yi,zi)−SξF(xi−1,yi−1,zi−1)).

The f(x,y,z) is Fξ-integrable on F if we have∫ (b,d,f)

(a,c,e)
f(x,y,z)dαFxd

β
F yd

µ
F z = sup

P[a,b]×[c,d]×[e,f ]

Lξ[f,F,P ]

=

∫ (b,d,f)

(a,c,e)
f(x,y,z)dαFxd

β
F yd

µ
F z = inf

P[a,b]×[c,d]×[e,f ]

U ξ[f,F,P ]. (11)

The Fξ-integral is denoted by
∫ (b,d,f)
(a,c,e) f(x,y,z)dαFxd

β
F yd

µ
F z .

2.3. Fα-DIFFERENTIATION

Let us consider F as a ξ-perfect set. Then the Fξ-partial derivative of f(x,y,z)
with respect to x is defined as

xDα
Ff(x,y,z) =

F− lim(x′,y,z)→(x,y,z)
f(x′,y,z)−f(x,y,z)
SξF(x

′,y,z)−SξF(x,y,z)
if (x,y,z) ∈ F

0, otherwise,
(12)
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if the limit exists. In addition, yDα
Ff(x,y,z),zDα

Ff(x,y,z) can be defined as Eq.
(12).

3. MAXWELL’S EQUATION ON THE FRACTAL TIME-SPACE

In this Section, we give the Maxwell’s equation on the fractal Cantor cubes,
which is a mathematical model for Maxwell’s equation on fractal space-time.

3.1. GRADIENT, DIVERGENCE, AND CURL ON FRACTAL CANTOR CUBES

We define the gradient ~∇ξFϕ(x,y.z), divergence ~∇ξF. ~A(x,y,z), and curl ~∇ξF×
~A(x,y,z) as follows

~∇1.8
F ϕ= î xD0.6

F ϕ+ ĵ yD0.6
F ϕ+ k̂ zD0.6

F ϕ

~∇1.8
F . ~A= xD0.6

F Ax+ yD0.6
F Ay + zD0.6

F Az

~∇1.8
F × ~A= î( yD0.6

F Az− zD0.6
F Ay) + ĵ( zD0.6

F Ax− xD0.6
F Az)

+ k̂( xD0.6
F Ay− yD0.6

F Ax), (13)

where ~A(x,y,z) = î Ax+ ĵ Ay + k̂ Az and ϕ(x,y,z) is a scalar function.

3.2. MAXWELL’S EQUATION ON THE FRACTAL CANTOR CUBES

We give the generalized Maxwell’s equation on the fractal Cantor cubes on the
vacuum as follows:

~∇1.8
F . ~E1.8

F =
ρ1.8F

εξF,0
, Gauss’s law (14)

~∇1.8
F . ~B1.8

F = 0, Gauss’s law for magnetism (15)
~∇1.8

F × ~E1.8
F = −tD0.6

F
~B1.8
F , Faraday’s law (16)

~∇1.8
F × ~B1.8

F = µξF,0
~J1.8
F +µξF,0 ε

ξ
F,0

tD0.6
F
~E1.8
F ,Ampère-Maxwell’s law (17)

where ~E1.8
F , ~B1.8

F , ε0, µ0, ~J1.8
F , and ρ1.8F are fractal electric field, fractal magnetic

field, permittivity of the fractal vacuum, permeability of the fractal vacuum, fractal
electric current density, and fractal electric charge density, respectively.

4. WAVE EQUATION ON THE FRACTAL TIME-SPACE

The generalized wave equation on the fractal time-space is given as

(tDα
F )2yξF (x,y,z, t) =

1

(vξF)2
~∇ξF.~∇

ξ
F y

ξ
F (x,y,z, t), (18)
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where time changes on the fractal set F with dimension α= 0.6 and the fractal space
F ×F ×F = F has dimension ξ = 1.8. Here, we arrive at the standard result by
choosing α= 1.

5. HEAT EQUATION ON THE FRACTAL TIME-SPACE

The heat equation has an important role in the study of Brownian motion and
Fokker-Planck equation. It shows the distribution of heat in a given region over the
time changes. Now, we suggest the generalized heat equation on the fractal time-
space as follows

(tDα
F )uξF (x,y,z, t) = Dξ

f (~∇ξF)2 uξF (x,y,z, t) (19)

where Dξ
f is the fractal coefficient of conductivity. Here (~∇ξF)2 is the generalized

Laplacian on fractal Cantor cubes.

6. EXAMPLES

In this Section, we present some illustrative examples to clarify the introduced
models for possible applications in physics.
Example 1. We consider the uniformly distributed charge QαF on the fractal Cantor
set. The electric field due to this distribution at point P is shown in Fig. 3.

Fig. 3 – The fractal Cantor set and the point P where we want to calculate the electric field.

Then, in view of Fig. 3 and using the Coulomb’s law on fractal sets we obtain
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the electric field as

EαF (x′) =

∫ SαF (1)

SαF (0)

kαF λ
α
F d

α
Fx

(SαF (1) +SαF (x′)−SαF (x))2
,

EαF (x′) = kαFλ
α
F

[
1

SαF (x′)
− 1

SαF (x′) +SαF (1)−SαF (0)

]
,

=
kαFλ

α
FS

α
F (1)

SαF (x′)(SαF (x′) + 1)
=

kαFQ
α
F

SαF (x′)(SαF (x′) + 1)
, (20)

where SαF (1) = 1, SαF (0) = 0, and α= 0.6.
We have plotted Eq. (20) as a function of x′ in Fig. 4 in order to compare with

the standard result.
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Fig. 4 – Plot of the electric field function due to Cantor set at point P .

Example 2. We consider the uniform charge distribution with density σ1.2F on
the Cantor dust (see Fig. 5 for the details).
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Fig. 5 – The charge distribution on the Cantor dust.

The electric field due to Cantor dust charge distribution at the point P using
Fα-calculus is

dξF
~EξF(~r,ξF ) =

kξF (~r,ξF −~r
ξ
F)

|~r,ξF −~r
ξ
F|3

dξFx d
ξ
Fy,

~EξF(~r,ξF ) =

∫ ∫
kξF (~r,ξF −~r

ξ
F)

|~r,ξF −~r
ξ
F|3

dξFx d
ξ
Fy, (21)

where ~rξF = SαF (x)̂i+SβF (y)ĵ, ~r,ξF = z k̂. Then, one can write

~EξF(~r,ξF ) =

∫ ∫
kξF (z k̂−SαF (x)̂i+SβF (y)ĵ)

|z2 +SβF (x)2 +SβF (y)2|3
dξFx d

ξ
F. (22)

Therefore, the asymptotic solution is

~EξF(~r,ξF ) =
σ1.2F

2ε1.2F

, SαF (x)→∞, SβF (y)→∞. (23)

Example 3. Let us consider a wave equation on the fractal time-space as follows

(tD0.6
F )2yξF (x,t) =

1

(v0.6F )2
(xD0.6

F )2yξF (x,t). (24)

It is straightforward that the solution of Eq. (24) is

y1.2F (x,t) =A1.2
F cos(k0.6F S0.6

F (x)−ω0.6
F S0.6

F (t)), v0.6F =
ω0.6
F

k0.6F
. (25)
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Fig. 6 – The plots of y1.2F (x,t) and y(x,t)≈ cos(ω− t).
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Fig. 7 – The plots of the solution of Eq. (26) and the standard solution in order to compare the results.

In Fig. 6 we have plotted y1.2F (x,t) for the case of

A1.2
F = k0.6F = ω0.6

F = χF ,

where χF is the characteristic function of the Cantor set. Here y(x,t) ≈ cos(ω− t)
is the standard solution.
Example 4. We consider a heated fractal bar with the length 0 ≤ x ≤ 1. The corre-
sponding fractal heat time-space equation is

(tD0.6
F )u1.2F (x,t) = D1.2

F (xD0.6
F )2 u1.2F (x,t), (26)

where the heat distribution u1.2F (x,t) in the fractal bar has the boundary conditions

u1.2F (0, t) = 0, xD0.6
F u1.2F (1, t) = 0, (27)
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and initial condition as

u1.2F (x,0) = 2sin(
π

2
x). (28)

For solving Eq. (26) we suppose the solution is as

u1.2F (x,t) = f
(
S0.6
F (t)

)
sin

(
π S0.6

F (x)

2

)
. (29)

Then by substituting Eq. (29) into Eq. (26) we have

(tD0.6
F )u1.2F (x,t)−D1.2

F (xD0.6
F )2 u1.2F (x,t) = tD0.6

F f
(
S0.6
F (t)

)
sin

(
π S0.6

F (x)

2

)
(30)

+D1.2
F

π2

4
f
(
S0.6
F (t)

)
sin

(
π S0.6

F (x)

2

)
= 0. (31)

Then we have

tD0.6
F f

(
S0.6
F (t)

)
+D1.2

F

π2

4
f
(
S0.6
F (t)

)
= 0. (32)

The solution for Eq. (32) is

f
(
S0.6
F (t)

)
= f

(
S0.6
F (0)

)
exp

(
−D1.2

F S0.6
F (t)π2

4

)
= 2exp

(
−D1.2

F S0.6
F (t)π2

4

)
.

(33)

Finally, we arrive at

u1.2F (x,t) = 2exp

(
−D1.2

F S0.6
F (t)π2

4

)
sin

(
π S0.6

F (x)

2

)
. (34)

We have presented the graph of Eq. (34) and the standard solution in Fig. 7.

7. CONCLUSION

In this paper, we have generalized the Fα-calculus on the fractal Cantor cubes.
The Maxwell’s equation on the fractal Cantor cubes is given and the electric field
due to Cantor dust is derived. We have also obtained the wave equation on the fractal
time-space. Moreover, the heat equation on the fractal time-space is written as an
application of the fractal calculus. Finally, using some illustrative examples, we have
compared the obtained results with those given by the standard calculus.
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