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Abstract. In this manuscript, we extend theFα-calculus by suggesting theorems
analogous to the Green’s and the Stokes’ ones. Utilizing the Fα-calculus, the classical
multipole moments are generalized to fractal distributions. In addition, the generalized
model for the Bohr’s energy loss involving heavy charged particles is given.
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1. INTRODUCTION

Fractals can be observed in several physical phenomena [1]. To study fractals,
mathematicians have developed several methods and techniques [2, 3]. Especially,
the applications of fractals were studied by Mandelbrot [4]. Recently, a method
analogous to the ordinary calculus has been developed on fractals; this calculus was
called Fα-calculus [5–9]. Fα-calculus is a successful theory proposed to solve the
nonlinearity problem of the theories of anomalous diffusion and of other physical
phenomena [10–33].

The applicability and simplicity of Fα-calculus has motivated us to expand the
application area of this calculus to the fractal physical systems. Firstly, using the
Fα-calculus, we prove divergence, Green’s, and Stokes’ theorems for fractals. In ad-
dition, we define fractal forms and then we use Fα-calculus to expand the classical
multipole moments for fractal distributions [34–36]. Finally, we use the master equa-
tion to the physical process of passing of fast heavy particle through matter using the
local fractional derivative. We present the classical background to energy straggling
phenomenon and explain the value of this study and highlight the shortcomings of
the application of the classical theory energy straggling. When a beam of fast heavy
charged particles passes through continuum matter the particles lose energy stochas-
tically [37, 38]. Suppose that a beam of heavy charged particles with kinetic energy
T passes through a thickness ∆x of an absorber and f(T,x)dT is the fraction of the
particles with energy between T and T +dT on a position x through the absorber. It

(c) 2017 RRP 69(0) 117 - v.2.0*2017.11.24 —ATG



Article no. 117 Saleh Ashrafi, Ali Khalili Golmankhaneh, Dumitru Baleanu 2

is obvious that f(T,x) satisfies the following master equation:

∂f(T,x)

∂x
=−

∫ ∞
0

q(T,ε)f(T,x)dε+

∫ ∞
0

q(T + ε,ε)f(T + ε,x)dε, (1)

where q(T,ε) is the probability that a particle will lose an amount of ε - ε+ dε in
traversing a distance ∆x in the absorber. f(T,x) is a Gaussian distribution for thick
absorbers [37, 39], and for thin layers f(T,x) has heavy tail [38, 40–43]. Classi-
cal studies of transporting of heavy charged particles deal with continuum materials
and differentiable transition probability functions, q(T,ε). Consequently, there is a
knowledge gap in the field of study of fractal materials and more general energy tran-
sition probabilities, for example, nowhere differentiable functions and fractal func-
tions. To study more general energy transition probabilities, we expand the master
equation with local fractional derivative.

This paper is divided into six Sections. The next Section is devoted to intro-
duce the mathematical tools that we use in this manuscript. Section 3 is about the
expansion of Green’s, Stokes’, and the divergence theorems and fractal multipole
moments. In Sec. 4 the application of the local fractional derivative to calculate the
straggling function in fractal structures is developed. The 5th Section discuses ex-
tension of classical Bohr’s energy loss for fractals. Finally we present a summary of
our conclusions.

2. BASIC TOOLS

In this Section, we give an introduction to the mathematical tools used in this
paper.

2.1. A LOCAL FRACTIONAL DERIVATIVE

The local fractional α-order derivative of function f is defined as

Dαf(y) = lim
x→y

dα[f(x)−f(y)]

[d(x−y)]α
0≤ α≤ 1, (2)

where the right hand side is the Riemann-Liouville fractional derivative which is
defined by [7]

dαf(x)

[d(x−a)]α
=

1

Γ(1−α)

d

dx

∫ x

a

f(y)

(x−y)α
dy 0≤ α≤ 1. (3)

This kind of fractional derivative has many successful applications. For exam-
ple, it is a local operator and its function on a constant quantity results zero [7]. It
is also proved that there exits a quantitative connection between the box dimension
of nowhere differentiable functions and the existence of the order of local fractional
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derivative [7]. Furthermore, the local fractional derivative appears as the coefficient
of the power with fractional exponent i.e.

f(x) =
N∑
n=0

f (n)(y)

Γ(n+ 1)
∆n+

Dαf(y)

Γ(α+ 1)
(±∆)α+Rα(y,∆), (4)

where Rα(y,∆) is the remainder and ∆ = x−y [8].

2.2. FRACTAL CALCULUS ON A SUBSET OF R

This Section contains an introduction to Fα-calculus. We choose the important
definitions and theorems of Fα-calculus, and for more details, we refer the readers to
the references mentioned in the introduction Section. In this paper, we assume that
F represents all fractal structures with dimension α. In addition, the notation of this
calculus can be seen in [5, 6].

Definition 2.1 The basis of Fα- calculus is on the integral staircase function, SαF (x),
of order α for a fractal set F , which is given as follows:

SαF (x) =

{
γα(F,a,x), if x≥ a;
−γα(F,x,a), otherwise,

(5)

where γα is the mass function of the fractal set F , all α,x,a ∈ < and 0< α≤ 1 [6].

It is worth pointing that the two important properties of SαF , the continuity and mono-
tonic increasing properties, are the essence of the definitions of Fα−derivative and
Fα−integral on fractals.

Definition 2.2 Let F ⊂ R, f : R→ R and x ∈ F . A number l is said to be the limit
of f through the points of F , or simply F -limit of f, as y→ x, for any ε there exists
δ > 0 such that

y ∈ F, |y−x|< δ⇒ |f(y)− l|< ε, (6)

then it is denoted by

l = F − limy→xf(y), (7)

[6].

Now the definitions of Fα-derivative and Fα-integral of fractals are as follows:

Definition 2.3 If F is an α-perfect set then the Fα-derivative of f at x is

Dα
F f(x) =

{
F − limy→x

f(y)−f(x)
SαF (y)−S

α
F (x)

, x ∈ F ;
0, otherwise,

(8)

[6].
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Definition 2.4 Let f be a fractal function. Let I be a closed interval. Then

M [f,F,I] = sup
x∈F∩I

f(x) ifF ∩ I 6= ∅, (9)

= 0 otherwise,

and similarly
m[f,F,I] = inf

x∈F∩I
f(x) ifF ∩ I 6= ∅, (10)

= 0 otherwise,

[6].

Definition 2.5 Let SαF be finite for x ∈ [a,b]. Let P be a subdivision of [a,b] with
points x0, ...,xn. The upper Fα -sum and lower Fα-sum for the function f over the
subdivision P are given, respectively, by

Uα[f,F,I] =

n−1∑
i=0

M [f,F, [xi,xi+1]](S
α
F (xi+1)−SαF (xi)), (11)

and

Lα[f,F,I] =
n−1∑
i=0

m[f,F, [xi,xi+1]](S
α
F (xi+1)−SαF (xi)), (12)

[6].

Definition 2.6 Let F be such that SαF is finite on [a,b]. For f , a function on F , the
lower Fα-integral is given by∫ b

a
f(x)dαFx= sup

P[a,b]

Lα[f,F,P ], (13)

the upper Fα-integral is given by∫ b

a
f(x)dαFx= inf

P[a,b]

Uα[f,F,P ], (14)

[6].

Definition 2.7 Let f be a fractal set F , f is Fα-integrable on [a,b] if∫ b

a
f(x)dαFx=

∫ b

a
f(x)dαFx, (15)

and it will be denoted by ∫ b

a
f(x)dαFx, (16)

[6].
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Theorem 2.1 A function h is α-integrable over [a,b] if and only if g = φ[h] (g is
conjugate function of h) is Riemann integrable over K = [Sα(a),Sα(b)]∫ b

a
h(x)dαx=

∫ Sα(b)

Sα(a)
g(u)du. (17)

Theorem 2.2 Let h be a function such that the image g = φ[h] of h is ordinary
differential on K. Then

Dα
Fh(x) =

dg(t= Sα(x))

dt
, (18)

for all x ∈ F [6].

The stair function satisfies

axα ≤ SαF (x)≤ bxα, (19)

where a and b are constants [5, 6].

3. FRACTAL GREEN’S, STOKES’, AND THE DIVERGENCE THEOREMS

In this Section, we extend fundamental theorems of classical calculus for a
fractal set. We use these theorems in the next subsection. Firstly, let us define exterior
derivative as follows [22];

dα =
n∑
i=1

dαFxiD
α
F,xi , (20)

and, for n= 1 it is given by

dαf =Dα
F,xf(x)dαFx, (21)

where f is a function on the fractal set F . The integration of Eq. (21) is as follows;∫
F
dαf =

∫
F
Dα
F f(x)dαFx= f(b)−f(a). (22)

For three dimensions we have

dαf =Dα
F,xfd

α
Fx+Dα

F,yfd
α
F y+Dα

F,zfd
α
F z, (23)

or in another notation
dαf =∇αF f ·dαF r. (24)

Let us calculate the fractal surface integral on a fractal cubic S with fractal boundaries∫
S
fzd

α
Fxd

α
F y+fyd

α
Fxd

α
F z+fxd

α
F zd

α
F y =

∫
S

f ·dαF a, (25)
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where f = (fx,fy,fz) is a fractal vector filed on fractal space. Along z axis on fractal
boundary surfaces of S1 and S2∫

S1

fzdaz +

∫
S2

fzdaz =

∫ b

a

∫ d

c
fz(x,y,e)d

α
F yd

α
Fx−

∫ b

a

∫ d

c
fz(x,y,f)dαF yd

α
Fx,

(26)
where a,b,c,d are the boundaries on which the fractal set is defined. By simplifica-
tion ∫ b

a

∫ d

c

[
fz(x,y,e)−fz(x,y,f)

]
dαF yd

α
Fx, (27)

and using ∫ f

e
Dα
F,zfz(z)d

α
F z = f(x,y,e)−f(x,y,f). (28)

and repeating the above calculation on x axis and y axis, we obtain∫
V

Dα
F · f dαV =

∫
S

f ·dαF a, (29)

where V is the fractal volume of fractal surface S and it is called fractal version of
divergence theorem. Now let us prove the Green’s theorem∮

∂S
MdαFx+NdαF y =

∫ ∫
S

[
Dα
F,yN −Dα

F,xM
]
dαF yd

α
Fx, (30)

where ∂S is the fractal boundary of fractal area S and M,N are the functions on
fractal set. The righ thand side of Eq. (30) in a fractal square can be written as∫ ∫

−Dα
F,yMdαF yd

α
Fx=

∫ b

a

[
M(x,c)−M(x,d)

]
dαFx, (31)

and the left hand side of the equation∮
Mdαx=

∫
1
MdαFx+

∫
2
MdαFx, , (32)

=

∫ b

a
M(x,c)dαFx+

∫ a

b
M(x,d)dαFx,

=

∫ b

a

[
M(x,c)−M(x,d)

]
dαFx,

where the indices 1 and 2 are the line boundaries of square with intervals a,b at
y = c,y = d. By using the same method we can prove∮

NdαF y =

∫ ∫
Dα
F,yNd

α
F yd

α
Fx. (33)
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Using the fractal Green’s theorem, in the similar way, we can prove the Stokes’
theorem, ∮

c
f ·dαr =

∫
∇αF × f ·dαa. (34)

3.1. APPLICATION

With the new integral definition on fractals we propose the fractal integral
Maxwell equations. The classical Maxwell equations describe electric and magnetic
fields on continuous materials. So, they are not applicable on fractal materials. We
suggest the classical Maxwell’s equations and their fractal forms being as follows;

ε0

∮
S

E ·da =

∫
V
ρdV, (35)

(Gauss’ law), ∮
∂S

E ·dl =− ∂

∂t

∫
S

B ·da, (36)

(Faraday’s law), ∮
S

B ·da = 0, (37)

(Gauss’ law of magnetic field),∮
∂S

B ·dl = µ0

∫
S

J ·da + ε0µ0
∂

∂t

∫
S

E ·da, (38)

(Ampere’s law),

ε0

∮
S

E ·dαa =

∫
V
ρdαV, (39)

(Fractal Gauss’ law), ∮
∂S

E ·dαl =− ∂

∂t

∫
S

B ·dαa, (40)

(Fractal Faraday’s law), ∮
S

B ·dαa = 0, (41)

(Fractal Gauss’ law of magnetic field),∮
∂S

B ·dαl = µ0

∫
S

J ·dαa + ε0µ0
∂

∂t

∫
S

E ·dαa, (42)

(Fractal Ampere’s law).
Here dl is the vector along a line, da is the vector area, dV is the volume, S is

the surface, ∂S is the boundary of surface. For classical and fractal electromagnetic
equations we refer to [21, 22, 44].
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The line integral of the magnetic field B along a fractal closed curve, l, is given
by ∮

B ·dαl = µ0I, (43)

where I is given by

I = 2π

∫
J(r)rdαr. (44)

Here J(r) is the fractal cylindrically symmetric current density distribution and r is
the radius of the coordinate. Then the left hand side of Eq. (43) becomes∮

B ·dl = 2πaB(a). (45)

For J(r) = J0, Eq. (44), Eq. (45), and Eq. (17), lead to

B(a) =

∫ a

0
J0S

α
F (r)dSαF (r), (46)

and using Eq. (19) we conclude that

B(a) = J0
1

4a
(SαF (a))2 ∼ a2α−1. (47)

At this point we note that this result differs from the other fractal theories [35, 36].

3.2. ELECTRIC QUADRUPLE EXPANSION FOR FRACTAL CHARGE DISTRIBUTION

The quadrupole terms for potential is given by

V2 =
1

4πε

1

a3

∫
F
r2P2(cosθ)ρ(r)dαV, (48)

by replacing P2(cosθ) we have

=
1

4πε

1

a3

∫
F
r2(

3

2
cos2 θ− 1

2
)ρ(r)dαV, (49)

where θ is the angle between a and r vectors

=
1

4πε

1

2a3

∫
(

3

a2
(a · r)2− r2)ρ(r)dαV, (50)

and then

V2 =
1

4πε

1

2a3

3∑
k,l=1

XkXl

a2
Qkl, (51)

where Xk are Cartesian’s coordinate of a, and the electric quadruple is defined by

Qαlk =

∫
F

[3xlxk− r2δkl]ρ(r)dαV, (52)
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where xk are coordinates of the vector r. For simplicity, we consider the more general
form of Qα

Qα(α,β,γ) =

∫
F

[αx2 +βy2 +γz2]ρ(r)dαV, (53)

then for fractal parallelepiped with volume 0 ≤ x ≤ A, 0 ≤ x ≤ B, 0 ≤ x ≤ C we
have

Qα =
1

3
SαF (A)SαF (B)SαF (C)[αSαF (A)2 +βSαF (B)2 +γSαF (C)2], (54)

where Qα = ρ0S
α(A)Sα(B)Sα(C) is the electric charge of the fractal distribution.

4. EXTENSION OF THE MASTER EQUATION

If the maximum energy loss in any single collision is small, then the right hand
side of Eq. (1) can be expanded as

−
∫ ∞
0

q(T,ε)f(T,x)dε+

∫ ∞
0

q(T + ε,ε)f(T + ε,x)dε=

∞∑
k=1

∂k

∂T k
[
Nk(T )f(T,x)

]
,

(55)

where Nk is defined as

Nk(T ) =

∫ ∞
0

dεεkq(T,ε). (56)

But if the energy transitional probability function is a non differential function this
expansion would be invalid, so, to generalize this equation we use the local fractional
Taylor expansion. Then, Eq. (1) can be written as

∂f

∂x
=

∞∑
k=1

∂k

∂T k

[
Nk(T )f(T,x)

]
+Dα

T

[ Nα(T )

Γ(α+ 1)
f(T,x)

]
. (57)

where

Nα =
1

Γ(α)

∫ α

0
q(T,ε)εαdε. (58)

If 0< α < 1, then Eq. (57) becomes

∂f(T,x)

∂x
≈Dα

T

[
Nα(T )f(T,x)

]
. (59)

Using Eq. (58), we propose a fractal model for the thick absorbers as

q(T,ε) =
kR

Tε1+α
, (60)

where kR,β are constants that depend on the incident particle properties. For α = 1
we lead to the classical transition probability q(T,ε) = kR

Tε2
[37]. In the following
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section we consider the space to be fractal and calculate the transition probability
numerically.

5. EXTENSION OF THE CLASSICAL BOHR’S ENERGY LOSS CALCULATIONS

In this Section, we give a physical fractal model to the transition of energy.
Consider a heavy particle with a charge ze, massM and velocity v passing through a
fractal medium. Suppose that there is a free and rest electron at some distance b from
the particle path. After the collision we assume the heavy particle to be undeviated
from its trajectory because of its larger mass (M � me). We find the momentum
impulse electron receives from the collision with the heavy particle;

J =

∫
Fdt= e

∫
E⊥

dαx

v
, (61)

where E⊥ is the vertical component of electric field to the particle path. Using the
extension of electromagnetic laws we have∫

E⊥d
αx=

2ze

b
, (62)

so that

J =
2ze2

bv
, (63)

and the energy lost by an electron will be

∆T (b) =
J2

2me
=

2z2e4

mev2b2
. (64)

If Ne is the density of electrons, the energy lost by all the electrons at dV is

dT (b) = ∆T (b)NedV =
2z2e4

mev2b2
Ne

dαb

b
dαx, (65)

where we have assumed that the fractal dimension of radius space is the same as x
space. Then Eq. (65) becomes

Dα
xT =

2z2e4

mev2b2
Ne

∫
dαb

b
. (66)
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Fig. 1 – Fractal space is a Cantor set: 1
bχC(b).
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Fig. 2 – The numerical calculation of the integral
∫
dαb
b χC(b).

If we integrate Eq. (66) over Cantor space, we obtain the results shown in Figs.
1 and 2.
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6. CONCLUSION

The Green’s and the Stokes’ theorems were generalized for functions with the
fractal support. The Fα-calculus was used to calculate the multipole moments of the
fractal charge distributions. In addition, we have used the Taylor expansion involving
Fα-derivatives to treat the more general energy transition probability functions. We
have also proposed a new model for the energy losing of particles through matter,
which is useful in the case of non-differentiable functions. The advantages of the
Fα-calculus is that can be applied for every fractal sets and fractal curves.
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